

i

University of Central Florida

Department of Electrical & Computer Engineering

Senior Design 1 – Summer 2019

Final Paper

SmartLeaf
Indoor Greenhouse System

Group 12

Jonathan Gilbert – CpE

Alex Lam – EE/CpE

Dany Mazboudi – EE

Megan Morris - EE

ii

Contents
Contents .. ii

1.0 Executive Summary -AL ... 1

2.0 Motivation - MM ... 2

3.0 Market Motivations - MM ... 2

 Market Goal - MM .. 3

 Market Appeal - MM .. 3

 Market Specifications - MM ... 3

 Market and Engineering Requirements - MM .. 4

 House of Quality - MM .. 5

 Health & Wellness Motivations - MM ... 6

4.0 Constraints - MM... 7

 Size and Weight Constraints - MM .. 7

 Power Constraints - MM .. 8

 Realistic Design Constraints - DM... 9

 Social Constraints - DM.. 9

 Sustainability - DM ... 10

 Manufacturability - DM .. 10

5.0 Research - MM .. 11

 Plant Needs - MM .. 11

 Light - MM ... 12

5.1.1.1 Light Intensity - JG .. 13

 Water & Drainage - MM... 14

 Nutrition - MM ... 15

 Temperature - MM .. 16

 Humidity - MM ... 17

 Airflow - MM ... 17

 Overall Environmental Requirements - MM .. 18

 Types of Plants - JG ... 19

 Sensors - DM .. 20

 DHT22 Temperature and Humidity Sensor - DM .. 20

 High Sensitivity Water Sensor – Red Version - DM .. 21

 LM393 Soil Moisture Sensor - DM .. 21

 pH Sensors – JG/DM .. 22

iii

 Microcontrollers -AL ... 23

 Main MCU – AL/JG ... 23

 WiFi Controller – AL/JG .. 23

 Bluetooth Controller – AL/JG .. 24

 Auxiliary Microcontrollers (Sensor Nodes) - JG .. 24

 Auxiliary Bluetooth Modules - JG .. 25

 Communication - JG .. 26

 UART - JG .. 26

 I2C - JG ... 27

 SPI - JG ... 27

 Wireless connectivity (WiFi) - JG .. 27

 HTTP - JG ... 27

 Bluetooth – AL/JG .. 28

 Zigbee - JG .. 28

 Sub-1GHz Transceivers - JG .. 28

 IoT - JG ... 29

 Publishing Messages - JG ... 30

 PubNub - JG .. 31

 Communication Design - JG .. 33

 Developing in CCS - JG ... 33

 Developing in Energia - JG... 33

 AWS Cloud Solution - JG... 33

 Google Cloud Solution - JG .. 34

 Communication challenges - JG ... 35

 Programming Languages - JG .. 35

 C/C++ - JG .. 35

 Python - JG ... 36

 Assembly - JG ... 36

 JavaScript - JG .. 36

 AT Commands -AL .. 36

 Software – JG ... 36

 Code Composer Studio - JG ... 36

 Energia - JG .. 38

 Uniflash - JG ... 38

iv

 Operating systems - JG .. 38

 Why Use an Operating System? - JG ... 39

 TI-RTOS - JG ... 39

 AWS FreeRTOS - JG.. 39

 Cloud – JG .. 40

 CCS Cloud - JG .. 40

 Security - JG ... 41

 Google Cloud Platform - JG ... 41

 Amazon IoT Services - JG .. 42

 GUI -AL ... 42

 Bluetooth Modules -AL ... 43

 DSD Tech HC-05 - AL ... 44

 HiLetgo HC-05 – AL .. 44

 HiLetgo CC3541 HM-10 – AL ... 44

 LEDs -AL ... 45

 Adafruit RGBW LEDs -AL .. 45

 CHINLY LEDs -AL ... 45

 LCD Screen -AL .. 45

 Adafruit LCD -AL .. 45

 Booster pack LCD for MSP432 -AL .. 46

 Fans – DM/MM .. 46

 RDK Brushless Cooling Fan - MM .. 47

 CUI DC Axial Fan – 5V - MM ... 47

 CUI DC Axial Fan – 12V - MM ... 47

 Pumps – DM/MM .. 47

 Ledgle Submersible Mini Pump - MM ... 48

 Daniu Submersible Brushless Water Pump - MM .. 48

 Peristalic Liquid Pump - MM ... 48

 Humidifier - MM .. 49

 APGtek Aluminum Mini Mist Maker - MM .. 49

 IC Station Ultrasonic Mist Maker - MM .. 50

 Power Supply - MM ... 50

 Power Calculation - MM .. 52

 Power Supply Selection - MM .. 53

v

 Voltage Regulators - MM .. 54

 Linear Regulators - MM ... 54

 Switching Regulators - MM.. 54

 Batteries - MM ... 56

 Control Systems - MM ... 58

 Power MOSFET - MM ... 58

 Motor Controllers - MM ... 58

 MSP432 Control -AL .. 60

 PCB Design Software - DM ... 60

 Kicad and Eagle - DM .. 60

 EasyEDA - DM ... 61

 PADS - DM... 61

 OrCAD - DM .. 62

 NI Circuit Design Suite - DM ... 63

 Board Environment - DM .. 64

 JLCPCB - DM... 64

 4PCB - DM ... 65

 Sunstone - DM .. 65

6.0 Vendors - MM ... 65

 Texas Instruments – DM/MM .. 65

 Adafruit - MM .. 66

 Smart Prototyping - MM .. 66

 Mouser - JG .. 66

 Amazon - MM .. 67

7.0 Standards - MM ... 67

 Greenhouse Environment Standards - DM .. 67

 Software Standards - JG ... 67

 Communication Standards - JG.. 68

 WIFI Standards - JG ... 68

 Bluetooth Standards - JG .. 68

 MQTT Standards - JG ... 69

 Power Standards - MM .. 70

 NFPA 70 National Electrical Code - MM .. 70

 ASHRAE Standard 90.1 - MM ... 71

vi

 PCB Standards – DM ... 71

 Component Placement - DM .. 71

 Traces - DM .. 72

 Separation of Components and Mitigating Heat Issues - DM 72

 Design Standards -AL .. 73

8.0 Safety Standards - MM .. 75

 FCC Requirements - MM ... 75

 Miscellaneous Safety Testing - MM ... 75

 NRTL Program - MM ... 75

 IP Code - MM ... 75

 UL 8750 LED standard ... 77

 Sensor Standards - MM .. 77

 IEEE Standard for Sensor Performance - MM ... 77

9.0 Project Design -AL .. 78

 Design Goals -AL... 78

 Hardware Goals - AL .. 78

 Software Goals -AL .. 79

 Power Supply & Rail Design - MM ... 79

 TPS56637 Synchronous Buck Converter - MM ... 81

 LMR62014X Simple Switcher - MM ... 81

 TPS55330 Boost/SEPIC/Flyback DC-DC Regulator - MM 82

 TPS560430Y Synchronous Step-Down Converter - MM 82

 TPS62175 Step-Down Converter with Sleep Mode - MM 83

 TPS62177 Step Down Converter with Sleep Mode - MM 83

 Efficiency and Overall Power Demands - MM .. 84

 Embedded Software Design - JG ... 85

 Communication Design - JG ... 86

 GUI Design - AL .. 87

 PCB Design - DM .. 87

 PCB Planning - DM .. 87

 Schematic Creation – DM/AL .. 87

9.5.2.1 Hierarchal Sheet #1 for Fans - DM ... 89

9.5.2.2 Hierarchal Sheet #2 for LEDs – DM ... 90

9.5.2.3 Hierarchal Sheet #3 for Water Pump - DM ... 92

vii

9.5.2.4 Hierarchal Sheet #4 for Humidifier - DM ... 94

9.5.2.5 Hierarchal Sheet #5 for the LCD Screen - DM ... 95

9.5.2.6 Hierarchal Sheet #6 for the MSP432 – DM/AL .. 97

 Assigning Footprints to Schematic Symbols - DM .. 100

 PCB Layouts - DM ... 101

 Traces and Planes - DM .. 104

10.0 Component Integration/ Testing – MM/AL .. 105

 Hardware Testing – MM/AL.. 105

 Continuity Testing -AL ... 105

 Power Supply Functionality Test - MM ... 106

 Voltage Regulator Functionality Test - MM .. 106

 Microcontroller Functionality Testing -AL .. 107

 Temperature/Humidity Sensor Testing -AL ... 107

 Soil Moisture Sensor Testing -AL .. 107

 pH Sensor Testing - MM .. 108

 Fan Functionality Testing -AL.. 108

 Pump Functionality Testing - AL ... 108

 LEDs Testing -AL ... 109

 LCD Screen - AL .. 109

 Communication Testing - JG ... 110

 Software Testing - JG ... 110

 WiFi Testing - JG.. 111

 Bluetooth Testing - JG .. 112

 MQTT Testing - JG .. 112

 PubNub Testing -JG .. 112

 Bluetooth Testing - AL ... 114

 Prototype - MM .. 115

 Prototype Planned Pin Layout -AL .. 116

 Parent Microcontroller -AL .. 116

 Child Microcontroller -AL .. 116

11.0 Greenhouse Construction - MM .. 117

 Placement and Mechanics of Environmental Controls - MM 118

 LED Placement - MM ... 118

 Watering Mechanism - MM.. 119

viii

 Fan Placement - MM .. 119

 Humidifier Placement - MM ... 120

 Final Planned Pin Layout -AL ... 120

 Parent Microcontroller -AL .. 121

 Children Microcontrollers -AL ... 121

 GUI User Guide -AL .. 121

 Home Page -AL .. 123

 Sensor Pages -AL .. 124

11.3.2.1 Connected Plant Page -AL .. 125

11.3.2.2 Pairing New Plant Page -AL ... 126

 LED Page -AL .. 127

 Environment Changer Page -AL ... 128

 Cloud Page -AL .. 129

 Project Operation & User’s Guide - MM ... 130

12.0 Project Administration - MM .. 130

 Budget - MM .. 130

 Milestones .. 132

 Senior Design 1 Milestones -AL... 132

 Senior Design 2 Milestones -AL... 132

13.0 Final Comments - MM .. 133

 Future Goals - MM ... 133

 Potential Areas of Expansion - MM ... 133

 Conclusion - MM .. 133

14.0 Appendices .. 134

 Permissions... 134

 Niwa One Request for Permission .. 134

 Science ABC Request for Permission... 134

 IC Station Request for Permission .. 135

 NEMA Enclosures Request for Permission .. 135

 Renesas Electronics Request for Permission .. 135

 NEMA Request for Permission .. 136

 User Pin Layout .. 136

 Parent controller - AL ... 136

 Child Controller - AL.. 139

ix

15.0 Works Cited ... 140

Figure 1- Examples of indoor greenhouse/gardening systems available on the market today.

Permissions requested from Niwa One. .. 2
Figure 2 - House of Quality .. 5
Figure 3- Overall equation for the type of photosynthesis that occurs in plants 12

Figure 4- Proper soil composition for healthy roots. Permissions requested from ABC Science 15
Figure 5- IoT Ecosystem ... 30
Figure 6- How the pub/sub MQTT mechanism works ... 30
Figure 7- PubNub channel topologies... 32
Figure 8: Communication Model .. 34

Figure 9- MQTT Client-Server Demo [26] .. 38

Figure 10: AWS FreeRTOS architecture .. 40

Figure 11: Example Google IoT Device Framework ... 41
Figure 12: TI GUI example... 43
Figure 13- Receptacle and plug type used by the SmartLeaf system. Permissions requested from

NEMAenclosures.com .. 51
Figure 14- Compatible plugs for the NEMA 5-15R; NEMA 1-15 (left), NEMA 5-15 (right).

Permissions requested from NEMA ... 51
Figure 15- Power savings between low-dropout linear regulators and switching regulators.

Permissions requested from Renesas Electronics ... 55
Figure 16- One-line diagram for the SmartLeaf System .. 57

Figure 17- Control Diagram.. 59
Figure 18: Block Diagram of Smart Greenhouse ... 78
Figure 19- General power rail design ... 80

Figure 20- LED power rail circuitry ... 81

Figure 21- Fan power rail circuitry ... 81
Figure 22- Pump power rail circuitry.. 82
Figure 23- Humidifier power rail circuitry ... 83

Figure 24- LCD display power rail circuitry .. 83
Figure 25- MSP430 power rail circuitry ... 84

Figure 26: Plant sensor node architecture ... 85
Figure 27: Communication Block Diagram .. 86
Figure 28: Schematic for Parent MCU ... 88
Figure 29: Fan Power Circuit with Connections via Global Labels in Kicad 89

Figure 30: Assigned Footprint for LMR62014XMF Simple Switcher ... 90
Figure 31: LED Power Circuit with Connections via Global Labels in Kicad 91
Figure 32: Assigned Footprint for the TPS56637RPA Synchronous Buck Converter 92

Figure 33: Water Pump Power Circuit with Connections via Global Labels in Kicad 93
Figure 34: Assigned Footprint for the TPS55330RTER DC-DC Regulator 94
Figure 35: Humidifier Power Circuit with Connections via Global Labels in Kicad 94
Figure 36: Assigned Footprint for the TPS560430Y Synchronous Step-Down Converter 95

Figure 37: LCD Screen Power Circuit with Connections via Global Labels in Kicad 96
Figure 38: Assigned Footprint for the TPS62175DQC Step-Down Converter 96
Figure 39: MSP432 Power Circuit with Connections via Global Labels in Kicad 97

Figure 40: Assigned Footprint for the TPS62177DQCR Step-Down Converter 98

x

Figure 41: Schematic for MCU Child #1 .. 99

Figure 42: Schematic for MCU Child #2 .. 100

Figure 43: Footprint assignment to symbols in parent PCB ... 101
Figure 44: PCBNew Main PCB outline .. 102
Figure 45: PCBNew Child #1 PCB Outline ... 103
Figure 46: 3D Viewer Mounting Hole clearance on MSP430 on child PCB #1 103
Figure 47: PCBNew Child #2 PCB Outline ... 104

Figure 48: Example of a Ground Plane in PCBNew .. 105
Figure 49: WiFi software block diagram .. 111
Figure 50: PubNub communication block diagram .. 113
Figure 51: Creating a widget on Freeboard. JSON format makes accessing our sensor data easy.

... 114

Figure 52: Freeboard Dashboard. This is where we can visualize our data sent from the

microcontroller to PubNub using MQTT ... 114
Figure 53: Example Bluetooth Test Sequence .. 115

Figure 54- Front and back view .. 117

Figure 55- Side views ... 118
Figure 56- Watering mechanism demonstration ... 119
Figure 57- Basis of design for the humidifier. Permissions requested from IC Station 120

Figure 58: GUI Block Diagram .. 122
Figure 59: Example Home Page ... 123

Figure 60: Example Sensor Home Page ... 124
Figure 61: Example Connected Plant Page ... 125
Figure 62: Example Plant Insertion Page.. 126

Figure 63: Example LED Show Page ... 127
Figure 64: Example Environment Changers Page .. 128

Figure 65: Example Cloud Page ... 129

1

1.0 Executive Summary - AL
This document serves as the final report documentation for the Smart Tabletop Greenhouse. This

project is to be designed and developed in accordance with the University of Central Florida’s

Computer/Electrical Engineering Senior Design course and the Accreditation Board for

Engineering and Technology’s (ABET) requirements for accredited engineering programs. The

final goal of this project is to showcase our groups skills in brainstorming, researching, designing

and fabricating a working product that is within the constraints of our choosing.

There rarely are opportunities to work on such a project that has these many places where an

individual’s ingenuity skillset can be showcased to such a degree. Since there have been similar

previous designs as the one we have envisioned, we were put up with an additional task to come

up with a way to stand out as a team all the while of producing a product that is realistic and doable

in the time that we have to work on it. Our group did a fantastic job of assigning tasks to each

individual, set up a realistic timeline for everyone to be accountable for, be understanding when

issues that were out of the hand of the individual occurred, and communicating to the rest of the

team of our progress and if any of us needed any assistance in the tasks that we were assigned

with.

The first half of this document covers the overall motivation, how we originally planned on

proceeding with our initial ideas, research and what we found to be feasible in our timeframe, and

the initial design and requirement specifications of our projects. The second half this document

covers more on how we interpreted our requirement specifications, how we implemented said

specifications, how we went about testing our product to see that it met all of our requirements and

were within our constraints, a general user guide for the user to figure out how to operate our

product, and the overall administrative planning that went into creating our product. Initially our

group was overambitious with what we thought we could do in our timeframe, but fortunately we

were able to scale it back to present a finalized product by the end of the two semesters allotted

for the time to finish this project.

Smart greenhouses and hydroponics are new horticulture techniques when compared to the

methodologies that mankind has had since its beginning of cultivating crops and plants for their

own needs. Only in the past century or so when new technologies emerged to observe, regulate,

and optimize a plants growth are when these methods were able to shine. Using these methods

were found to cultivate nearly all crops faster, and usually assisted them in creating a higher yield

in the process.

Further research and ingenuity will continue to help these new horticulture techniques grow into a

reliable and consistent method of raising crops and hopefully increase the growth in the community

that has the potential to gather many enthusiasts, create a better and more optimal environment for

all, generate a high revenues for the agricultural community, and ultimately change the current

way that we currently cultivate our food.

2

2.0 Motivation - MM

This section serves to outline the motivation and intent behind the project and provide a means of

meeting the market and user wants through engineering specifications. Comparable indoor units

will be noted, and the basis of design for this project will be identified.

3.0 Market Motivations - MM
Small, indoor greenhouses/gardening systems already exist on the market. However, those tend to

fall into one of four categories (listed from least to most expensive):

• Simple windowed enclosures with no control capabilities- these are typically used as an interior

design element, but they also prove a simple solution to holding in humidity and providing

protection from pests. Terrariums also fall into this category.

• Agricultural ‘sheds’ with pliable enclosures and shelving- these tent-like structures are

typically an indoor/outdoor unit, but their affordability and diverse size range makes them good

candidates for users who want to efficiently generate produce within their space. The open

floor and flexible enclosure allow for the inclusion of separate watering and light systems.

• Small, open-topped tubs with overhead light- these are most notably the hosts of countertop

herb gardens. Some models that are self-watering, most are limited to grow only herbs due to

their small root systems and lenient humidity requirements.

• Futuristic-looking ‘smart’ tank enclosures- smart gardens with app-control. In general, they

water the plants and provide them with light and can be controlled via an iOS/Android app.

More expensive varieties provide humidity control. Design and size options are limited.

Figure 1- Examples of indoor greenhouse/gardening systems available on the market today.

Permissions requested from Niwa One.

3

 Market Goal - MM
This project’s goal is to combine the desired elements from the above categories (as shown in

Figure 1) to create a device that can more closely target the end user’s desires. More specifically,

the aesthetic appeal of the simple windowed enclosure, the maneuverability and functionality of

the agricultural shed, the conservative size and accessibility of the open-top tub, and the user-

friendly controls and automation of the smart tank enclosures. With this goal outlined, market

specifications can be explored.

 Market Appeal - MM
A modern design is necessary to appeal to consumers, but the hyper-futuristic designs present in

comparable units should be avoided. This will provide distinction on the market and have a greater

emphasis on aesthetic beauty to further differentiate the enclosure. The unit will be a cleanly

integrated, complimentary feature to a living space, while simultaneously providing a nurturing

and accessible environment for plant growth. A vertical orientation will conserve floor space while

maximizing the area for new growth; this format also allows for the plants to be the greatest

emphasis, softening the overall look of the unit. This will be further emphasized with wooden and

textured finishings to nicely frame the foliage and cleverly hide electronic components.

The user will be able to comfortably control, monitor, and alter the greenhouse conditions via web

app from a computer, tablet, or mobile device. Given time and budget constraints, this method is

more feasible than creating an iOS or Android application while ultimately working for devices of

either party. Specific user controls will be described later in the document, but the aim is to expand

the user’s ability to modify greenhouse conditions while not overwhelming them with free range.

This will be a significant feature as the inability/limitations in making alterations to pre-existing

care routines is often a complaint of similar devices.

In terms of installation, any device with plants involved generally constitutes a greater setup time

than other household hobbyist-units. This should be streamlined and made as simple as possible

for the end user, specifically in regard to sensors that need to be placed into soil. This will be

thoroughly detailed later in the Greenhouse Operation section. Installation for professionally

manufactured units have the upper hand, as most have a single planter with integrated sensors to

determined conditions; regardless, this project will allow the user to monitor multiple planters.

This grants the user more flexibility in plant placement while simultaneously reducing design cost,

making the unit more affordable and competitive on the market.

 Market Specifications - MM
With all this in mind, the market specifications for this project are as follows:

1. Greenhouse should have a modern appeal with an organic and simple design

2. The greenhouse controls system should be automated and controlled with a web app

3. The app should be intuitive and easy to navigate

4. The installation process should be safe and easy

5. The unit should be affordable in comparison to similar models on the market

4

 Market and Engineering Requirements - MM
To achieve the market requirements, engineering requirements are defined to quantitatively set

parameters and provide structure for how to move forward with the design. outlines the

engineering requirements, specifies which market requirements they target, and provides

justification for their inclusion in the design.

Table 1 - Market and Engineering Requirements

Market

Requirements
Engineering Requirements Justification

2

Should have a web app that supports

WIFI or Bluetooth 4.0 connectivity to a

microcontroller

‘smart’ devices typically allow

for mobile control and monitoring

of a system over Bluetooth 4.0 or

an internet connection

2
The device must communicate with the

cloud to store data

We won’t have much space on

the microcontroller, so storing the

data online is the best solution.

1

Power supply shall not obscure the plants

from receiving sunlight or detract from

the overall appearance of the system.

Nothing added to the system is to

negatively impact the quality of

the plants.

2

Should have various sensors to measure

the environmental factors that the plant

life is experiencing.

In order to provide a nurturing

environment for plant growth,

factors such as humidity and

hours of sunlight are to be

monitored and used for controls

2
Should include a watering mechanism for

all plant life within the system.

Having a self-watering

greenhouse will give the system a

user-friendly and foolproof nature

2,3
Should collect and display environmental

data (from the sensors)

Users will want to be informed of

the greenhouse conditions

4
Should be within 5 cubic feet with a

vertical orientation.

Due to this being an indoor

device, it should take up as little

space as possible

2 Should have a user-friendly GUI

Have an easy-to-access interface

is imperative for data collecting

on this scale

2
Should be able to control environment

changers in the system

We need to be able to change the

environment to optimize the

growth of the different plants

5

 House of Quality - MM
The House of Quality is a tool used to describe and define the various relationships between

marketing and engineering requirements for a product. It also provides an indication for how

changes made in one portion of the product can impact other areas. The base of the chart (or

‘house’) defines the relationships between the engineering and market items as having a strong

relationship, moderate relationship, negative relationship, or no relationship. The ‘roof’ of the table

shows the connection between engineering requirements, from having a strong positive

correlation, positive correlation, negative correlation, and strong negative correlation. The roof is

particularly important in showing potential conflicts that may arise during the engineering design

process. The row at the base of the roof indicates if that individual engineering requirement is to

be minimized, maximized, or targeted. A house of quality for product design is a necessity as it

provides clear documentation of the roles and relationships at play. Ideally, it will speed up design

and prevent serious miscommunication on the engineering team. The House of Quality for the

greenhouse system is shown below in Figure 2.

Figure 2 - House of Quality

6

 Health & Wellness Motivations - MM
Most people can appreciate the aesthetic and air-purifying qualities that house plants have to offer

– not to mention the potential savings and health benefits of growing fruits and vegetables – but

lack the ‘green thumb’ needed to keep them alive and happy. With greater monitoring and control

of the plant’s environment, indoor gardening could become more feasible for the typical

household.

The appeal of indoor gardening extends past the convenience of producing vegetation for food,

though that ability should not be taken lightly. ‘Food deserts’ – urban areas where it is difficult to

obtain affordable or good-quality fresh food – are a rising issue in the United States. These regions

tend to coincide with higher rates of poverty, and also bring in a slew of health issues such as

obesity and heart disease. People living in these conditions often have to choose between buying

expensive produce in inconvenient quantities to then go home and prepare meals for their

household, or buying cheap, highly caloric fast food that is filling, albeit non-nutritious. If an

indoor garden system could be made available to these homes at a reduced rate, it could at least

save them time and money in procuring fresh vegetation and give more meal options.

In addition to providing greater access to fresh produce, indoor plants have been known increase

the air-quality within a confined space and, quite simply put, can make people happier. Through

photosynthesis, plants convert the carbon dioxide humans exhale into fresh oxygen. During this

process, as found in a 1989 experiment conducted by NASA, plants have the ability to filter the

air of volatile-organic compounds such as formaldehyde and benzene [1]. Within a space with

regularly circulating air, such as a typical home, this effect is reduced. However, with a greater

volume of plants in a controlled environment, it is possible reduce the level of pollutants that would

be present in an urban environment. Another health-based benefit of houseplants are its effects on

mood. A 2015 study conducted by the National Center for Biotechnology Information

demonstrated how interaction with indoor plants can reduce psychological and physiological stress

by calming the autonomic nervous system activity in young adults [2].

Even with all the benefits associated with indoor gardening, there are likely many people who

wouldn’t consider incorporating it into their daily lives due to the difficulty of providing and

maintaining a nurturing environment for plant growth. Some main issues that can impact a plants

ability to thrive indoors are over/under watering, lack of drainage, too much or too little sunlight,

dry air, and depleted nutrients in the soil. The good news is that most of these factors can be

monitored and controlled in a smart greenhouse setting – soil moisture sensors can be used to

indicate when to water, sunlight sensors can determine if the garden is receiving adequate light,

hygrometers can be incorporated to monitor ambient humidity, and soil pH sensors are able to

serve as an indication for nutrient deficiencies. Having access to these factors alone could be

sufficient to caring for this vegetation, but these sensors could also be used communicate with

other devices to automatically maintain a nurturing environment; i.e., humidifiers, a watering

mechanism, grow lights for supplemented sunlight, and even a separate reminder system for

fertilization.

7

4.0 Constraints - MM
This section serves to detail the project constraints for the indoor greenhouse system. Some

constraints are imposed by factors and limitations outside of our control and need to be accounted

for during the engineering process. Other constraints have been elected to provide a basis of design

and help meet the market requirements.

 Size and Weight Constraints - MM
The greenhouse system is intended for indoor use in houses, apartments, offices, and retail

environments as a consumer product. These environments are expected to have limited space, and

it is important to consider the actual size of the finished product prior to implementation of the

design. The device needs to be large enough to operate as a functioning greenhouse, but small

enough to exist comfortably and not hinder the functionality of a space. A large indoor greenhouse

design could be considered as an architectural detail for visual interest, but the average consumer

would likely not have the funds, area, or ability to install the unit. For this reason, we have decided

to make the greenhouse vertically oriented and containable within a 2’ x 2’ square area. This

conserve floor space and feasibly entry into doorways while maximizing planting ability with

vertical gardening practices.

A tall build is ideal as it will capture the visual interest of passersby by pure merit of existing

within the plane of the average adult’s eyelevel. However, height is not an unlimited resource, and

the size limitations of ceilings – and especially doorways – needs to be considered. The typical

dimension of a residential interior door is 6’8” x 2’8”, while the typical ceiling height in the same

environment is 8’ to 9’. Factors like tight corners and awkward inclines in residential spaces can

prevent or hinder horizontal movement of the unit to fit through doorways into larger open areas

safely. For this reason alone, the size is to be constrained to fit vertically through a doorframe with

a few inches of clearance: 6’ x 2’ x 2’.

The weight of the finished unit needs to be considered primarily for safety concerns during the

installation process and prevent the unit from tipping if a minor collision occurs. OSHA notes that

individuals lifting loads that exceed 50 pounds increases the risk of injury [3]. While it would be

ideal to limit the weight of this design to 50 pounds, this could potentially limit greenhouse

functionality and create nuisances for the user by limiting the amount of water the system can hold

at a time, requiring water to be filled and emptied more frequently.

Another concern for the system revolves around weight distribution. The greenhouse is to be

vertically oriented as to preserve floor space and create visual interest, but this design choice could

increase the risk of the unit tipping if the top is significantly heavier than the base. To mitigate this

risk, the finished unit will be designed to have a low center of gravity to prevent this from

occurring. All water tanks and applicable electrical components are to be contained to the base of

the unit to aid in tipping prevention, and additional weight can be incorporated to the structure if

the components and furnishings do not provide sufficient stability. In order to provide a low

enough weight for a feasible installation while still allowing enough freedom to potentially add

weight for stability, the unit weight will be constrained to 90 pounds. This will allow for two

people to safely move the device into place while mitigating the risk of tipping.

The final size and weight constraints applied to this project can be seen in Table 2.

8

Table 2- Project size and weight constraints

Variable Maximum Dimension

Length 2 ft

Width 2 ft

Height 6 ft

Weight 90 lbs

 Power Constraints - MM
As it is expected for the indoor greenhouse system to reside within a residential home or

commercial space, the most straightforward and user-friendly way for the device to receive power

is from mains via standard wall-mounted receptacles. This is more feasible than a solar or battery

powered design that would require additional maintenance; it may, however, restrict placement for

the unit, as it needs to be within the length of its power cord to an outlet. Receiving power directly

from mains limits the degree of energy-efficiency that can be achieved, as the power will be

stepped down significantly, and some energy will be lost to heat during the conversion.

While this could result in a marginally higher electric bill, any similar system with solar power

would be a significant additional expense and have more potential points of failure. Even without

the consideration of expense and engineering complication, the incorporation of a solar-powered

system for a greenhouse introduces a significant contradiction: it is assumed that the indoor system

will not receive enough sunlight from the ambient surroundings to encourage plant growth without

the addition of grow-lights. If we assume poor lighting conditions exist that our device needs to

correct, we cannot also assume there will be enough light to power our device. External

workarounds could be applied, but not without additional complications and detraction from the

overall aesthetic design.

Typical receptacles are rated for 15A, and at maximum receive 120VAC. Therefore, the absolute

maximum power we have available to our system is 1800W; however, it is unlikely that any single

general-purpose receptacle (GPR) would be drawing 15A as it is common practice to have multiple

GPR’s on a single circuit. Luckily, most components with applicable use to a greenhouse of this

size require significantly lower input voltage for standard operation, and the use of a step-down

transformer can effectively lower the voltage delivered to certain components within our device

while providing enough current to power several small components.

Per the reasons outlined in the paragraphs above, power delivered to our device will be contingent

on the use of a step-down transformer that receives 120VAC, 15A at maximum from a GPR on

the primary line. Further details on this transformation can be found in the Power Supply section.

9

 Realistic Design Constraints - DM
As engineers, we need to consider a multitude of things before we begin constructing a project.

We need to look at safety being on the top of our priorities list before we even begin building our

smart greenhouse project. We need to answer the question of how we’re going to tackle this in the

most efficient and safest way possible. For this we’re taking careful consideration of how we’re

going to go about powering our project to satisfy the issue of safety. Though, safety is not the only

thing that we need to look at regarding these things.

ABET needs to see the impact with regards to economic, social, political, environmental, safety,

sustainability as well as manufacturability. When it comes to our greenhouse project, there will be

little to no economic impact since we’re doing this project as a university level project and not as

a project that we’re going to manufacture and distribute to consumers on a widespread scale. When

it comes to environmental impacts, the greenhouse we’re creating will be something that people

will have within their homes. I know that when talking about greenhouse projects, there is a

concern when it comes to greenhouse gasses but there will be no issue with regards to our project

since it’s much smaller than the typical large-scale greenhouse that one would see a large company

creating.

 Social Constraints - DM
Now when we talk about social constraints, things could be a bit extensive given the size of a

group that’s working on the project and their schedules surrounding it. We need to talk about a

few things that fall under social constraints such as trust, time, tools, materials, resource

availability and cost. When it comes to trust, we need to make sure that each of our group members

have a clear idea of what needs to be done and we all need to agree upon an idea and how we’re

going to be implementing it. We cannot say we’re going to do something then suddenly one of our

team members decides we need to do something else. There’s only one exception to this and that

is if we all agree to the change that the group member is suggesting. This will likely happen if it’s

a very important change that can affect the efficiency as well as the safety of the project we’re

going to be building.

Also falling under trust, we need to also all agree to a planned-out schedule as to when we all need

to meet to work on this project and get it done. If anything, this is the most important factor when

it comes to trust since this is a team effort, we all need to get together to get this done. Next, under

social constraints will be the materials. When we design our product and need to decide on what

we need to construct it, we need to look at all aspects of the materials and what can go wrong. We

need to look at factors such as the weight of the material, strength of the material as well as the

probability of the material we’re going to be using being corrosive. If we use material that will

corrode with our greenhouse project, then we’ll be facing major setbacks since we need to find a

replacement for those corrosive materials.

Next for social constraints we need to look at the tools we’re going to be using as well. We need

to ensure that we have everything we need to solder components onto the PCB and to get

everything tested. We’re going to need to have a solid functioning soldering iron as well as a

laptop/pc to test certain components of the project as well as an oscilloscope and the computer

software required to run these tests and for the design of the PCB. Another social constraint we

ought to look at is the resource availability. If we wanted to order a certain sensor, we need to

make sure that there’s plenty in stock for us to order them. We also need to make sure that when

10

we place these orders, we’re also getting them from vendors that we can deem as reputable with

some solid credentials to make sure that the parts we order work. If we order from a well-known

vendor, we can be more confident in our purchase and can use our parts with confidence.

Also, back to the discussion earlier about having more than enough stock on standby for us to

utilize, if we order our parts and we need to purchase more for excess, we need to make sure that

they are still available for purchase and that they are not sold out. That would really inconvenience

the group as well as the project entirely. Finally, for social constraints we need to talk about the

cost of our project.

Before we even purchase these parts, we as a team need to decide on a rough estimate of how

much this project is going to cost us and base our budget around that rough estimate. We also need

to make sure that the estimate that we make for this project is reasonable and realistic. We don’t

want to underestimate how much this greenhouse project is going to cost us. Now this is all just

regarding the social constraints, now when it comes to the political constraints, there really isn’t

much to speak of given the scope of our project and what our project is about. It being a greenhouse

project on a university level, there is much doubt that there will be any political impact whatsoever,

so there’s no need to have any concern over this.

 Sustainability - DM
Up next for discussion would be the constraints regarding sustainability. Our project will be

designed with sustainability in mind. How sustainable our project will be will honestly be

dependent on the project itself. Our project being a university level project will not have the idea

of being sustainable for an extensive period such as a time span of a few years. We are not

designing our project. We are designing this project with the idea of showcasing it to professors

and not for something that is going to be laying around for a very long and extensive period. Next

and finally we need to talk about manufacturability.

 Manufacturability - DM
When it comes to our greenhouse project, the constraint of manufacturability is something we need

to look at in terms of building it. We need to look at exactly how feasible it is to put this project

together is a question that must be asked when looking at any sort of team-based project. With a

project of our scope, the constraint regarding manufacturability is nothing that is too detrimental

to us. We already have a plan of materials we’re going to be using and we already laid out how

we’re going to construct the project, so now all we need to do is put it all together. Justifications

for the realistic design constraints noted in this document can be found Table 3 below.

Table 3- Realistic Design Constraints

Realistic Design

Constraint
Justification for Constraint

Economic Not sold to consumers

11

Realistic Design

Constraint
Justification for Constraint

Environmental Too small of a scale for greenhouse gas pollution

Social Careful discussion with team members

Political
Our project will not have any political constraints due to

the scope and the idea of our project.

Ethical

Regarding ethics, we’ll be sure to grow our plants in an

environment in which they’ll be likely to thrive and

survive in

Health and Safety

We’ll make sure our project will be up to standards with

health and safety when creating our design. It’ll be of

upmost priority

Manufacturability
Our project will be able to be manufactured in with no

issues at all due to the materials and parts we choose

Sustainability
Our project will be plenty sustainable and will be sure of

that through rigorous testing.

5.0 Research - MM
This section serves to present research and justification for the components and environmental

conditions the indoor greenhouse system will need for optimal consumer operation. Biological

plant needs will be discussed in detail in order to form electrical and computer engineering

solutions for an ideal system. Plants that will thrive within the size constraints and engineering

limitations will be discussed. Finally, the framework for the devices needed to correct the

environmental conditions will be presented.

 Plant Needs - MM
In order to target the environmental conditions needed for our greenhouse, we first need to

understand the biological mechanisms needed for plant growth. The factors to be considered in

this section are sunlight, hours of sunlight, watering and drainage cycles, fertilization requirements

and indicators, etc. Identifying these needs will allow for the main control mechanisms to be

Table 4 (Cont.)- Realistic Design Constraints

12

defined and designed; the intent of creating the ideal environment for plants to grow in will be the

central theme and overall goal of the SmartLeaf indoor greenhouse system.

 Light - MM
In general, plants take in carbon dioxide and water and react with sunlight to produce sugar and

oxygen. This reaction, called photosynthesis, converts the radiant energy from sunlight – absorbed

by chlorophyll – into chemical energy. The equation for photosynthesis is shown in Figure 3

below. Sunlight contains the complete spectrum of light, and different frequencies serve different

functions; for example, blue wavelengths encourage foliage growth, and red wavelengths

encourage flowering and fruiting. Interestingly enough, most plants have little need for green light

and reflect it back- which is why leaves appear green to the human eye. Artificial light sources can

trigger photosynthesis if they have a spectrum that contains red and blue wavelengths. This is

typically why greenhouse grow-lights tend to have a purple hue, but a full spectrum light source

(appearing white) can provide the plant adequate radiant energy at a more pleasant color

temperature to the human eye.

For the power limitations in this project, LEDs would be an ideal light source as they have a smaller

load-current requirement when compared to incandescent and fluorescent bulbs. Additionally, less

heat would be introduced to the system. Unfortunately, full-spectrum LEDs not widely available

enough to have them be a basis of design; red and blue LEDs will need to be programmed to

deliver adequate energy.

This may detract from the aesthetic appeal of the greenhouse design, but different lighting cycles

can be introduced to provide the balanced wavelengths needed for plant growth during the night

or hours where the building is not regularly occupied to account for this. During the daytime, or

hours of operation/occupation, more appropriate stage lighting can be selected to elegantly display

the vegetation with no effect on the quality of plants, given a period of adjustment for a new

routine.

0000000000000000Figure 3- Overall equation for the type of photosynthesis that occurs in

plants

Time and intensity of sunlight is largely dependent on the type of vegetation being grown. Plants

that are used agriculturally tend to require a longer period of sunlight exposure than those that are

grown for their foliage, as more energy is needed to produce the glucose necessary for hearty

fruiting. Due to the wide range of light requirements for common garden growth, placement in

respect to the radiant light source and the grouping of plants with similar requirements must be

considered.

13

As seen in Table 5 below, vegetables are typically grouped into three categories: low, medium,

and high light. As a general rule, the larger and more complex the fruit, the more sunlight needed

to produce it. Foods in the lower light category largely include leafy greens as the edible portion,

as less glucose is being produced. Plants that produce vegetation below the soil and near the root

system (mostly tubers) require more energy than the leafy vegetation, but are comprised of simple

starches, and therefore tend to need less sun exposure than vegetables that fruit above the soil and

have more complex sugars.

Table 5- Light Requirements of Common Garden Vegetables

Category Low Sunlight
Medium

Sunlight
High Sunlight

Time Exposed
3-4 hours per

day

4-6 hours per

day

6-8 hours per

day

Fruit/Vegetable

Swiss Chard Beets Peppers

Cos Lettuce Carrots Tomatoes

Lettuce Potatoes Watermelon

Parsley Broccoli Okra

Arugula Radishes Eggplant

Asian Greens Turnips Strawberries

5.1.1.1 Light Intensity - JG
The range of UV light intensity varies for each type of plant. To provide optimal lighting for the

plants in our device, we will need to measure the intensity of the UV light directly affecting the

plants ability to grow indoors where natural sunlight might not be possible. UV light is measured

in Lux, and can be used to determine how bright our grow lights should get when they’re on. For

plants that do well in the shade, 5-15 kLux will be fine. Plants that require direct sunlight will be

comfortable with 15-40 kLux of intensity [4]. However, the required intensity for plants with high

light requirements can reach up to 100 kLux. Consequently, the lights our system supports will

directly impact the types of plants we can grow.

For WS2812B LEDs, the luminous intensity is given in the datasheet, and can be used to figure

out the illuminance of each LED. To convert from candela to lux, we need the distance in meters

to complete the following formula:

𝐸𝑣(𝑙𝑢𝑥) =
𝐼𝑣(𝑐𝑑)

𝑑(𝑚)
2

14

Table 6: WS2812B Light characteristics [5]

Emitting

Color

Wavelength

(nm)

Luminous

intensity (mcd)

Illuminance (lux),

d=10mm
Voltage (V)

Red 620-625 390-420 39-42 2.0-2.2

Green 522-525 660-720 66-72 3.0-3.4

Blue 465-467 465-467 46.5-46.7 3.0-3.4

 Water & Drainage - MM
As noted in the previous sections, water is an integral component of the photosynthesis cycle.

Water will travel up a plant’s stem to the leaves where it will then be exposed to sunlight, evaporate

through small openings in the foliage - called stomata – and exchanged for carbon dioxide, which

is then used to produce glucose (sugar) and oxygen. Water is also important to vegetation because

it provides turgor, which is the water pressure inside the cells that make up a plant’s skeleton.

Without enough turgor, a plant will not be able to support its structure, causing the leaves to wilt

and droop, limiting the leaf area exposed to sunlight. Too much water can also be the detriment of

vegetation, as plants require oxygen to escort nutrients and water up the root system and to the

leaves. If this movement, called evapotranspiration, does not occur, water cannot evaporate from

the stomata to trigger photosynthesis.

Another effect is that the root hairs, which are each a single modified plant cell, are unable to

metabolize without oxygen and will eventually die. Root hairs are quite small in comparison to the

mass of the root system and vitally important for the uptake of nutrients and water; unfortunately,

their meager size makes them extremely sensitive and susceptible to rot. Although there may be

enough water in and around the root environment, the root hairs have now died through suffocation

and the plant will enter a period of stress due to internal drought.

The plant will attempt to reduce water loss through leaf curling and drooping, as the turgor is

effectively lowered. Photosynthesis stops, the roots begin to rot, and the organism will slowly die

unless the rot is removed, and proper drainage is introduced. Gardeners typically introduce rigid

particulates such as sand or perlite to prevent the soil from becoming too compacted and

encouraging aeration and drainage away from the roots. Overwatering is a main concern of potted

plants as water tends to pool and stagnate at the bottom and cannot run off into earth below.

Therefore, a proper run-off system for excess water is absolutely vital to any indoor garden.

Drainage and runoff solutions will need to be cleverly engineered as to protect the plant roots

effectively while conserving precious resources such as space and available power. The drainage

system employed in this project will make use of inclines and gravity to lead excess water to a

separate holding tank for removal. A diagram of ideal soil conditions can be seen in Figure 4

below.

15

Figure 4- Proper soil composition for healthy roots. Permissions requested from ABC Science

 Nutrition - MM
Most vegetation can survive early on with simply water and sunlight. However, if a plant does not

have access to nutrients during the major growth stages, it will likely become a weak plant or

simply die off early [6]. A lack of nutrients will also limit the organism’s ability to breed and grow

fruit. So, if a gardener’s desire is to produce a bounty of edible vegetation, nutrients need to be

introduced to the routine.

The primary nutrients are Nitrogen (N), Phosphorus (P), and Potassium (K); these are commonly

referred to as the NPK nutrients. Nitrogen atoms are needed to produce amino acids, proteins, and

enzymes. This encourages green, leafy growth and the formation of stems. Phosphorus is

especially important during the process of seed germination, as it encourages the formation of root

systems. Certain Phosphorus compounds can optimize the energy converted during photosynthesis

and act as an immediate source of energy in all cells. Potassium promotes fruiting, flowering, and

can increase disease resistance as well as general plant hardiness. It is necessary for water

regulation, photosynthesis, respiration, and the efficient use of nitrogen. Potassium is also key for

ample glucose and starch production.

Secondary nutrients and micronutrients are supplemental to the NPK nutrients. There are three

secondary nutrients: Calcium, Magnesium, and Sulfur. Calcium is involved in some enzyme

processes and helps to regulate the transport of other nutrients around the plant. Calcium pectate

is also used to glue together cell walls. Magnesium is needed for healthy leaves and is needed to

produce chlorophyll; its pectate also assists in gluing cell walls together. Sulfur atoms are used to

produce select amino acids and vitamins. Micronutrients such as Boron, Copper, Iron, Manganese,

Molybdenum, and Zinc help maintain healthy cell formation, assist in photosynthesis, and activate

certain enzymes.

Luckily, plant nutrients are widely available on the market and come in a variety of forms. The

difficulty arises in identifying deficiencies and administering supplements in a manner that does

not overwhelm the plant. Water soluble NPK fertilizers can be heavily diluted and added to the

watering routine- this method effectively delivers the nutrients directly and evenly dispersed to the

roots while limiting the concentration exposed to the root hairs, protecting them from chemical

16

burn. In terms of identifying nutrient deficiencies, we must look to the impact of soil pH on a plant.

In general, you can provide a plant with all the key nutrients, but the alkaline or acidic nature of

the soil might be negating the effect or prevent them from being absorbed. A neutral pH range of

6.5-7.5 is generally accepted as the ideal condition for plant growth.

 Temperature - MM
Temperature plays an important role in promoting seed germination and photosynthesis. In

general, 77°F is considered the optimum temperature for photosynthesis. For greenhouse

environments, the optimal range is extended to be a few degrees warmer, up to around 80°F. This

is a few degrees above standard room temperature and would require supplemental control and

power to provide a warmer environment.

Conditions for seed germination largely depend on the plant being grown, though ideal conditions

typically surpass 80°F; however, germination is possible at lower temperatures- albeit with lower

rates of success. In Table 7, a variety of vegetables are charted according to their practical and

optimum temperatures for planting; the middle column indicates a point at which a 70% success

rate was achieved, and the far-right column indicates the temperature at which the success rate

approaches 100% [7].

Table 7- Practical and Optimal Temperatures for Germination

Vegetable

Practical

Temperature for

Planting

Optimal Temperature

for Seed Germination

Beets 45°F 85°F

Carrots 45°F 80°F

Lettuce 45°F 75°F

Parsley 45°F 75°F

Radishes 45°F 85°F

Spinach 45°F 70°F

Turnip 50°F 85°F

Cabbage 53°F 85°F

Swiss Chard 54°F 85°F

Corn 55°F 96°F

Tomatoes 55°F 85°F

Cucumbers 65°F 96°F

17

Vegetable

Practical

Temperature for

Planting

Optimal Temperature

for Seed Germination

Peppers 65°F 85°F

Cantaloupe 69°F 90°F

Squash 70°F 95°F

Beans 71°F 81°F

Watermelon 72°F 95°F

Okra 74°F 95°F

Eggplants 75°F 82°F

Pumpkin 75°F 96°F

As seen in Table 7 above, plant life can easily be supported at a realistic range of temperatures as

long as the correct plant is chosen for a particular environment. Conveniently, this practical range

is easily achieved in a room-temperature environment; ideal temperatures for an indoor greenhouse

enclosure.

 Humidity - MM
Plants need moisture in the air in order to thrive, as without it, water in the leaf’s stomata will be

evaporated before it can be exchanged for carbon dioxide during the process of photosynthesis.

So, humidity is necessary to prevent the plant from losing this water, rather than actually supplying

any to the plant. Humidity and temperature share a unique relationship and one should not be

considered without accounting for the other, as the former is typically considered in terms of its

relative humidity. Relative humidity is the ratio of the partial pressure of water vapor to the

equilibrium vapor pressure of water at a given temperature [8].

This calculation provides context to the limits of water vapor in the air at various temperatures, as

hot air can physically hold more moisture content than cooler air. This means that cooler air at the

same level of absolute humidity will have a higher relative humidity than that of hot air. Relative

humidity is widely used in the context of gardening because lower temperatures typically

correspond with less water being able to evaporate out of the stomata. Ideally, the relative humidity

of a greenhouse should be above 50%.

 Airflow - MM
Plants need a balance between humidity, heating, and ventilation to prevent the development of

molds, fungi, and viruses. Proper air circulation should allow for water vapor to be present within

the environment without letting it condensate and stagnantly collect for long periods of time. This

is especially important in a greenhouse environment, where the conditions for sustain plant life in

18

a closed environment can also grow harmful cultures that could bring disease to the entire

enclosure. Proper ventilation will also provide an outside source of carbon dioxide for the plants

to use during photosynthesis.

 Overall Environmental Requirements - MM
By gaining a fundamental understanding of what plant life needs to thrive, it is now possible to

identify the factors and environmental conditions we need to provide in the greenhouse via sensors,

devices, and electronic controls. The greenhouse needs to provide the conditions shown below in

Table 8. Nearly all mechanisms will rely on a microcontroller receiving sensor inputs and initiating

the appropriate controls response. Timers will also be employed to trigger controls activity for

conditions that are difficult or redundant to monitor, but nevertheless required for ideal operation

of the indoor greenhouse system. Routines, methods of control, and additional device data will be

presented within the contents of this document.

Table 8- Overall Environmental Requirements

Plant

Need
Provision Engineering System

Sunlight

Radiant energy light source with

either a full spectrum of light or red

and blue wavelengths

LED strip lights of blue and red

wavelengths on a timed schedule,

6-8 hours per day

Water

A watering system that fully waters

plants only when the soil is dry and

has a means of collecting and

removing excess water from the soil

to prevent root rot

Pump and tubing that delivers

water to plant beds when

moisture sensor indicates dry

soil; runoff system that collects

water prior to drainage

Nutrients

A system that allows for the delivery

liquid NPK nutrients on a regular

schedule

Accessible water tank for adding

liquid nutrients to standard

watering system

Balanced

pH

Monitoring of soil pH to indicate

nutrient absorption

pH sensor that communicates

levels to be displayed to the user

Humidity
Relative humidity monitoring and

maintenance of at least 50%

Small diffuser that activates upon

low hygrometer measurements

Airflow

A ventilation system for providing

carbon dioxide and preventing

disease

Fans that operate on a regular

basis and upon high hygrometer

measurements

19

 Types of Plants - JG
To make our device more appealing to the general public, we would like to be able to grow a wide

variety of plants that aren’t too meticulous to keep track of. After all, we’re engineers, not

gardeners. However, we would like our device to have capabilities that can extend to experienced,

capable gardeners that would like to use our product to grow more intensive kinds of plants.

Basil is a great choice for first time gardeners. A well-drained plant can produce a cup of basil

every two weeks. It only requires 4-6 hours of sunlight, and minimal space (2 per square foot). It

is weak to the cold less than 50oF, but that won’t be a big problem since our smart garden is

intended to stay indoors [9]. Basil is sturdy enough to be transplanted to another pot and do fine.

It also has a wide pH range, between 5.1 and 8.5 [10].

More ambitious gardeners might be looking to grow something a little more complex than just

herbs. With our smart garden you will also be able to grow certain fruits, for example strawberries.

Strawberries need 6 hours of sunlight a day and have a shallow root system, about 4-5 inches of

length, which makes planting strawberries in our smart garden something even a novice gardener

can accomplish. Strawberries require a soil pH level of 5.6-6.3 and once flowering they should be

fertilized every ten days, until your finished harvesting.

Another plant to grow in our smart garden is parsley. Seeds are planted 1 to 2 inches apart and can

grow to be 1 to 2 feet tall. To mimic 1 to 2 inches of rain per week, parsley might need to be

watered more intensively than other plants, thus our device needs to handle the different rates of

watering for each plant. Soil moisture sensors will make sure the soil never runs dry by alerting

the watering system if the moisture ever drops below a threshold.

By knowing certain conditions that each plant grows most efficiently in, we can monitor for those

certain conditions with sensors for data such as humidity, temperature, pH, and light exposure.

The more sensors we have, the better we make predictions on how to help the plant grow. However,

more sensors mean a bigger financial cost, which is a constraint we must worry about. Table 9

shows the optimal readings these sensors would be looking for in the plants mentioned above. It

will be ideal to pick plants that tolerate the same pH levels so that the planting bed has an even

spread of nutrients [11]. To keep the watering system design simple, it will be best to pick a variety

of plants that share the same soil moisture levels, since then watering can be done for the whole

plant bed at once, rather than at different times for each plant. Having the ability to water each

plant individually would be a great advancement to make but given the project scope for the

timeline we have, it seems out of reach to have in our final device.

Table 9: Plant specifications [12]

Plant Soil Moisture Soil pH

Basil 40-80% 6.1-7.0

Strawberries 20-60% 6.1-7.0

Parsley 40-80% 6.1-7.0

20

 Sensors - DM
For this project, we’re going to be using multiple sensors that will be used to monitor everything

that we’re going to be needing to keep a watchful eye on to make sure that everything is being

done properly. We have considered the specifications of these sensors and how useful they will be

for us regarding this specific project that we’re working on which is the indoor greenhouse project.

Stability is an important factor as well when looking at these sensors. We need to make sure that

our system remains stable when everything is connected and running. We will attempt to verify

stability and functionality of these sensors via a prototype before we attempt to make the final

build of the project. When constructing the prototype, we’ll make sure to verify the specifications

and test whether the functionality of the sensors that we order are functioning properly. These

sensors will be monitoring a variety of things such as temperature, humidity, water level, and soil

moisture. Making sure that all these things are being monitored and recorded for data is imperative

for our project to ensure that the plants that we’re going to be growing will be thriving in the most

optimal way. Since we’re dealing with living plants, careful monitoring is necessary with these

sensors.

Given our project being an indoor greenhouse, sensors such as these are important to have.

Selection of our sensors was also something that was carefully done to make sure that we try to

make our project as optimal as possible. We factored in many things for our selection, primary

concerns being cost as well as accuracy. There is an interesting reason as to why the DHT22 that

we have selected is needed to measure both temperature and humidity. Air that is at a cooler

temperature holds less water than air that is warm even though they may be reading at very similar

humidity levels. Even though humidity is the same, if the temperature is different, the amount of

moisture that can be picked up can also differ if the temperature is warm or cold. We’re going to

remedy the temperature issue of going cold by attempting to keep the temperature as consistent as

possible.

Due to the nature of the project being a tabletop greenhouse, temperature fluctuations should not

be too common unless under extreme circumstances which may cause the tabletop to not function

altogether. One such extreme circumstance would be a power outage. If a power outage were to

occur that would naturally cause everything to stop functioning within the project such as the

DHT22 humidity sensor, high sensitivity water sensor, and our LM393 soil moisture sensor. No

power would be sent to the project since it would be connected to the power outlet. Then, there

would be rising temperatures within the tabletop greenhouse due to the lack of air conditioning

within the environment outside of the greenhouse. Though this may not be an issue for a

greenhouse, but for our purposes it is an issue since our smart tabletop greenhouse will not be

functioning regardless.

 DHT22 Temperature and Humidity Sensor - DM
This sensor measures temperature as well as humidity. It will be utilizing a thermistor as well as a

capacitive sensor for humidity by reading the data observed by the air around it [13]. After getting

this data, the data pin will be receiving this information for the user to observe. This sensor was

selected for multiple reasons. One of the reasons is that the DHT22 is not that expensive and can

be considered fairly cost efficient. Data on this sensor is refreshed every 2 seconds which is fine

for our current project, we do not need data updates to occur too often regarding temperature and

humidity, we are just looking for accuracy in that regard. This sensor will be connected to a power

of 3 to 5 volts which is the power that we’ll be considering for this project regarding the sensors

21

and microcontroller. When it comes to readings regarding humidity, there are accuracy variations

of 2-5%, whereas the temperature readings vary in accuracy from around ±0.5ºC. For our project

purposes the variations ranging from these percentages could be negligible. Being off by a couple

of percent will not be detrimental to our project in anyway. The only way something like this can

affect how our project is going to operate is if the percentages vary well over a mark of over 10-

15% which we’re way far off from.

Sampling rate is more than enough with this part whereas we are updated with new data every 2

seconds with sampling rate of 0.5 Hz. There was a previous version of this part that we were

considering which was the DHT11 but considering the difference in costs and the benefits we get

out of the cost difference on the DHT22 we had to go with the one that was more accurate and

precise, being the DHT22 Temperature and Humidity Sensor. There are 4 pins on the DHT22 for

VDD, signal, null, and ground. When it comes to communicating with the microcontroller that

we’ll be using, there will approximately be about a 5ms time delay per communication with the

microcontroller. If we take any sort of lag into consideration, there wouldn’t be too much to speak

about when it comes to the DHT22 since a 5ms time delay is extremely negligible. Plus, we

wouldn’t need too many updates on the temperature and humidity regardless. Though it is nice for

us to receive constant updates on the Temperature and Humidity of our greenhouse.

 High Sensitivity Water Sensor – Red Version - DM
We will be using the High Sensitivity Water Sensor for our specific project. When deciding on

this sensor, we considered the cost as well as durability. We need something that will last for a

project of our scope, so we considered other sensors and their specifications but for our needs and

purposes the High Sensitivity Water Sensor will be enough in terms of cost and durability. We

will be using this sensor to monitor water levels within our indoor miniature greenhouse. Basic

sensor which will be using parallel wires to get a reading on the water level of our miniature

greenhouse [14].

This water level sensor will mainly be used to keep a measure on the water tank that we will be

utilizing in this project. We do not want the water to go beyond a certain level, which is why we’ll

be using this sensor to keep a watchful eye on it. This sensor is enough for our purposes as well

given its specifications of having a working operation of 3.3-5 volts as well as working in

temperatures between 10ºC-30ºC [14]. Given the operating voltage as well as operating

temperature, we should be able to use this specific water sensor for our project. There are 3 pins

on the sensor for the signal, ground and VCC respectively. Since this water sensor is capacitive in

nature it will be placed around the water tank to make sure we always have a reading on our water

levels.

 LM393 Soil Moisture Sensor - DM
For us to monitor when we will need to give our plants more water or to see if we are giving our

plants more water than they need, we will need to incorporate a soil moisture sensor in our project.

It would be easy to make a simple error regarding the watering of the plants that we’re going to be

growing so we’re going to need to be extra cautious by adding the soil moisture sensor so that we

can avoid this issue entirely.

22

We will be utilizing the LM393 soil moisture sensor to do this. This sensor is capacitive in nature,

so this sensor will have two probes that will be inserted into the soil in our miniature greenhouse

to keep track of the moisture in the soil. An example of how this will work can be seen.

Of course, given that we are building a miniature greenhouse, we’ll be using multiple soil moisture

sensors to monitor different varieties of plants that we’ll be growing. Specifications seem

reasonable and within the scope of our project, having an operation of 0.3-5 volts. Operating

temperature for the LM393 is between 0-70ºC which is well within the range of the scope of our

project [15]. Our project will be an indoor greenhouse so there’s no way the temperature will dip

below 0ºC and there’s no way it’ll rise above 70ºC. There are exceptions to when temperature

could rise in the tabletop greenhouse and that’s if there was poor temperature regulation in the

room surrounding the tabletop greenhouse. This would be due to air conditioning failure or if the

fans installed for cooling and airflow regulation stopped working. Though we’re going to prevent

this from occurring to the smart tabletop greenhouse by plugging it into a powerful surge protector

with a large backup battery that can continuously support our project and prevent it from shutting

down. This way we’ll be able to at least keep everything functioning with regards to the greenhouse

at least until the surrounding temperature regulates itself again.

 pH Sensors – JG/DM
Having a pH sensor will help us monitor data about the nutrient levels of the soil. Plants that

require more organic material will grow better in a lower pH setting. Generally, most plants do

well in the 6-7 pH level.

The Ezo-pH embedded pH circuit is an affordable sensor that can send pH reading levels over

UART and I2C in ASCII format. The circuit comes with a probe that measures the hydrogen ion

activity in a substrate. A glass membrane at the tip of the probe permits the hydrogen ions from

the surrounding soil being measured to diffuse into the outer layer of the glass. Larger ions remain

in the soil, creating a potential difference across the probe, resulting in a small current proportional

to the concentration of hydrogen ions in the soil. The Ezo-pH sensor comes with three different

pH level solutions to use for calibrating the tool. There’s also example code online for the device

provided by the manufacturer to help us get a demo set up quickly [16]. When it comes to the

usage of the Ezo-PH sensor, there are also very well created documentation to support this product.

All the information that we need to make sure that our project will be able to support this peripheral

is there for us when we need to reference it.

Another pH sensor is the Go Direct Tris-Compatible pH sensor. This sensor is marketed towards

consumers aiming to measure the pH of semi-solid material such as soil or food. This is important

to note because there are other pH sensors that exist just for measuring the pH of liquids and would

give inaccuracies while trying to get any sort of readings from a semi-solid. There are pH ranges

that go from 0-14. Also, the specifications for this sensor range from 0-100 degrees Celsius which

is well within our range for our specific project. Response times for readings from this pH sensor

are a full response every 30 seconds at a temperature reading of 25 degrees Celsius. Also, at those

readings we have a large margin regarding temperature readings. The impedance of this pH sensor

is approximated to be about 20kΩ also being read at the temperature reading of 25 degrees Celsius.

Regarding the electrode type of the pH sensor, it is a double-junction and has a polycarbonate

body. Also, the style of the membrane of the pH sensor is completely made from flat glass. Also,

for this pH sensor, there are also errors that may be picked up due to sodium causing the range of

23

the pH go over 12. Even though the range says 0-14 for pH, more than likely there are

inconsistencies with the sodium causing the reading to be read over a pH level of 12.

 Microcontrollers -AL
For this particular project, an Arduino or a Raspberry PI would have easily been a surefire way to

have a microprocessor to handle all the functions that we needed, but we decided to try to appeal

more to the skills that corporate companies would desire rather than hobbies skills. Thus, we

decided to search for microcontrollers instead that would be able to micromanage the functions

that we need on a smaller scale. On the market currently, there are were so many MCUs that we

could choose from, but out of all of them there were not many affordable ones that could handle

all the function that we were planning to implement. For our project, it was planned to use too

many pins for a single microcontroller, thus we came with the idea to have a central parent

microcontroller that would handle the main processing, receiving and delivering of data along with

controlling the user interface while a having smaller, less intensive microcontrollers to handle all

the peripheral controls i.e. water pump, temperature sensor, pH sensors, etc.

 Main MCU – AL/JG
For the main parent microcontroller, we came to the consensus that we should use an ARM

processor. This is because it would be easy to purchase and test these since Texas Instruments has

a plethora of launchpads with an ARM processer already embedded within the development boards

along with different kinds of expansion backpacks to add functionality to them. The MCU we

chose for this project is the MSP432P401R. Its core contains an ARM 32-bit CPU that operates

up to 48 MHz. It has up to 24 analog input channels and up to 48 I/O pins with interrupt capability,

so we’ll have plenty of pins to use to control the system. We can use up to four 16-bit timers, each

with five options for capture, comparison, and PWM capability. These will be used top drive the

fans, LEDs and provide clocks for the WiFi and Bluetooth modules. Two 32-bit timers are

provided for interrupts, which will be helpful for programming when to gather data from sensors

and for enabling low power mode. The ultra-low power modes for the MSP432 chip are very

efficient. In active mode, the chip draws about 80uA/MHz. in low power modes, the chip will only

draw 660 nA, but can shut down even more to draw only 25 nA. the chip operates at a wide supply

voltage range, but we’ll be using the standard 3.3 V. The chip stores up to 256 KB of flsh memory,

capable of simultaneous reading and execution. There’s also up to 64KB of SRAM, and 32KB of

ROM for peripheral driver libraries [17]. To program the cchip, there are the 4-pin JTAG and 2-

pin serial wire debug (SWD) interfaces. Serial communication is supported with four eUSCI_A

modules for UART and SPI (up to 16 Mbps) and four eUSCI_B modules with SPI and I2C.

 WiFi Controller – AL/JG
To do some initial testing on, we purchased the MSP430F5529 Launchpad from TI along with the

CC3100 WiFi Booster Pack to experiment with the idea of a functionality of having our Smart

Greenhouse connect to the internet. The CC31XXEMUBOOST emulator board was needed to

flash settings to the WiFi booster pack. We choose to experiment with this device since there are

many resources for us to find if we ever need assistance in implementing our ideas. The CC3100

24

network processor chip comes with a dedicated ARM MCU that splits WiFi and internet protocols

from peripheral microcontroller operations. It comes pre-equipped with WiFi drivers, but to install

updated ones, the emulator is needed. The chip will interface with the MSP432 over SPI or UART.

It has a low memory footprint, requiring less than 7KB of code and only 700 B or RAM to run the

TCP client application. The chip can operate at 3.3 V, and has a variety of low power modes. When

connected and idle, the chip draws about 690 uA, but can be put into deep sleep for a draw of 115

uA, or hibernate down to 4 uA. Where receiving data, the device will draw around 53 mA.

Likewise, the device will require more current for transmission at around 223 mA. The clock

source can come from the master MCU or a dedicated crystal at 40 MHz or 32.768 kHz.

 Bluetooth Controller – AL/JG
For other testing, we also decided on purchasing a MSP432P401R Launchpad along with a

CC2564MABOOST module backpack to experiment with the functionality of having a star model

to connect multiple Bluetooth modules to a single, parent module which will oversee all the

operations of the peripheral sensors. As to why we choose these evaluation boards, there are many

applications of them being used in similar way all over the engineering community. To find and

optimize other engineers’ solution to similar problems that arise in the future would be easy

enough. The CC2564MABOOST also has dual-mode Bluetooth and Bluetooth low energy to

switch back and for as to optimize power usage, a certified and royalty-free TI Bluetooth stack,

demos, 4-wire or 3-wire UART and PCM/I2S Interfaces so we can send different kinds of data

packets as we see fit. The CC2564B chip controlling the Bluetooth module will operate at 3.3 V,

and also has low power optimizations for current consumption. In active mode, the chip draws

about 1 mA, and spikes to around 110 mA during transmission. In sleep mode, current draw drops

to 105 uA, and 7 uA in shutdown mode. We will need a copper antenna on the PCB we build for

the chip to use for radio communication.

 Auxiliary Microcontrollers (Sensor Nodes) - JG
The child nodes that will be collecting sensor data from the plants will not need to be as complex

as the master ARM microcontroller. For the sensor nodes, the MSP430G2553 will be enough to

incorporate up to 3 sensors and Bluetooth capability. The MSP430G2553 makes up for its lack of

processing power with its low power mode capabilities. 95% of the time, the MCU will be shut

off, only to wake up to take periodic sensor readings. This will allow the Bluetooth node devices

to have long lasting battery life. As shown in the following table, the low power modes (LPM) of

the MSP430 drastically reduce the amount of current draw in the device.

Table 10: Summary of MSP430 Low power modes

Mode DCO MCLK SMCLK ACLK Current

(Amps)

Active 3.3V Up to 16

MHz

ON ON 32 kHz

crystal

4 mA

25

Mode DCO MCLK SMCLK ACLK Current

(Amps)

Active 1.8V Up to 1 MHz ON ON 32 kHz

crystal

200 uA

LPM0 Up to 1 MHz OFF ON 32 kHz

crystal

80 uA

LPM3 OFF OFF OFF 32 kHz

Crystal/VLO

1 uA/0.5

uA

LPM4 OFF OFF OFF OFF 0.1 uA

By using LPM3, the MSP430 can use ACLK to time interrupts of when to make sensor readings.

Keeping our microcontroller in low power mode for most of its operation will take advantage of

the low power efficiency of the sensor nodes. Fortunately, Bluetooth technology has become

optimized for low power consumption as well.

 Auxiliary Bluetooth Modules - JG
To connect the master MCU with the child modules, we’ll use the CC2541 BLE chip equipped

with serial communication over I2C. The schematics for the Bluetooth module will mimic the HM-

10 wireless Bluetooth board that is a popular module for use with low power microcontrollers. The

Bluetooth module will operate at 3.3V and will run at 32MHz. To communicate with the MSP430

controlling the sensor child node, there will need to be two pins for UART transmit and receive.

A state pin showing the connection status could be useful for lighting an LED on the device to

show that it is connected [18]. There are many fakes of the HM-10 for sale, so we’ll need to be

careful about purchasing from a trusted vendor. Though we’ll be integrating the CC2541 with the

PCB for our sensor modules, it will be worth getting a premade HM-10 board to test out to

understand how it works first.

To illuminate the low energy capabilities of BLE compared to classic Bluetooth, we can measure

the current draw of the device. When the HM-10 is paired with a device and operating, it draws

around 9.1 mA. When the it is disconnected but still active, it draws around 9 mA. Compared to

older models such as the HC-05 module that consumes around 20 mA while operating, BLE cuts

current draw in half. The biggest advantage of BLE comes when using the sleep mode, where the

HM-10 will only consume around 120 uA, opposed to the HC-05 low power state that draws about

2 mA. A coin cell battery rated for 240 mAh would then be capable of powering the Bluetooth

module for 2000 hours, or around 83 days [19]. The HM-10 can be woken up by sending it a string

or at least 80 characters or more, then put to sleep by issuing an sleep command. In BLE, the

connection link is periodically acknowledged to respond to wake up events. This is handled by the

CC2541 internal stack and already optimized for the lowest possible power consumption [20].

26

 Communication - JG
Since this is a 2019 project, we want to implement the newest wireless communication features

into this project. Skills using WiFi and Bluetooth technology are in high demand in the tech

industry. Wireless communication also eliminates constraints wired devices have and opens up

new possible solutions using the wide variety of applications available on the internet. While

communication may be done wirelessly, many of the familiar protocols such as UART, I2C, and

SPI are used by wireless technologies and should be understood by our group if we want to venture

deeper into the ocean of wireless connectivity.

 UART - JG
Universal Asynchronous Receiver Transmitter, or UART, is a type of serial I/O protocol that is

supported by most microcontrollers. UART is used to communicate with peripheral devices as

well as computers. UART is asynchronous since the transmitter and receiver each have its own

clock signal. With two wires, UART can be implemented as bidirectional simultaneous

transmission, known as a full duplex. The transmission line begins idle at high, then drops low for

a start bit. After that, data is usually transmitted starting with the least significant bit (LSB)

followed by a high stop bit at the end of transmission. The baud rate we set defines the bit duration,

which is the clock rate the transmitter is operating on. Popular baud rates include 9600 for 16-bit

controllers, or 115200 for 32-bit. Parity bits are useful for detecting errors in transmissions,

typically reserved for wireless communication since data loss is more common. Another popular

protocol in wireless communication is flow control, which manages the throughput of data. For a

crowded network with devices all transmitting at the same time, it’s good to have flow control to

ease the pace of data flow.

Table 11- UART Configuration

Parameter Meaning
Popular

Configuration

Baud Rate Transmission speed 9600

Data Size
Number of bits

transmitted
8-bit

First bit
Most or least significant

first
LSB

Parity A bit to detect errors None

Stop bit End signal 1-bit

Flow Control
Prevents congestion of

data
None

27

 I2C - JG
Inter-Integrated Circuit (I2C) communication is based on a bus topology. Two wires for Serial

Data (SDA) and Serial Clock (SCL) are used to provide communication between the master MCU,

various sensors, memory, and other modules we add to the circuit. The master MCU controls

reading and writing to I2C connected components and also drives the clock. The two wires of I2C

are pulled-up to high by default. Devices pull wires low to transmit a 0.

 SPI - JG
Serial Peripheral interface (SPI) is another common communication protocol where a master MCU

communicates with one or more devices. Two data wires between the master and device make a

full duplex. The protocol is synchronous in that the master generates a specific clock signal on a

third wire that must match both devices. A fourth wire is used as the chip select signal, which is

activated by the master to allow a device to communicate. SPI is not officially considered a

standard, therefore SPI technology may differ between common devices. An LCD display can

support most SPI protocol to display data.

 Wireless connectivity (WiFi) - JG
WiFi networks are made up of clients, such as laptops, phones, or internet connected

microcontrollers. Access Points (AP) connect to the wired network, and all communication done

wirelessly between clients goes through the access point. Transmission on 802.11 wireless LAN

networks gets complicated due to the physical conditions of the environment. Radio signals on

these frequencies can bounce off solid objects and create echoes that can cancel or reinforce each

other. This causes the received signal to be slightly different than the signal transmitted. Since

wireless signals get broadcasted openly, there is a concern for proper security measures to be

implemented. WiFi can usually be accessed up to 100 meters and have a throughput of up to

54Mbps.

 HTTP - JG
Hypertext Transfer Protocol (HTTP) is an application-level protocol used for distributing data

across the internet. In HTTP, a client sends a request to a server in the form of a request method,

Uniform resource Identifier (URI), and protocol version followed by a message containing data.

The http scheme is used to locate network resources with HTTP protocol. The http syntax identifies

a host, port, and path. For IoT applications, HTTP lacks scalability. MQTT is preferred for being

able to listen to messages and distributing small packets of information in large volumes. These

aren’t issues that we might run into with our smart garden, but it might be best to model our

communication based on IoT preferred methods.

28

 Bluetooth – AL/JG
Bluetooth is a wireless personal area network (WPAN) protocol designed to eliminate the need for

wires in the physical layer of the communication stack. Bluetooth operates at the 2.4GHz and uses

adaptive frequency hopping to avoid interference with other non-hopping communication network

devices such as WiFi or ZigBee. Bluetooth works in a star topology, with one master node in the

center of the network and one or more slave nodes connected to the master. The master node

provides packet exchange, reference clock time, and the frequency hopping spread spectrum

pattern. Slave nodes are connected to the master and synchronized with its clock and frequency

hopping scheme. The slave nodes must go through the master to communicate. One master node

can interconnect with up to 7 slave nodes.

Operations include Classic Bluetooth and Low Energy. Classic Bluetooth operates with standards

set before Bluetooth 4.0. Low Energy (LE) Bluetooth protocol was newly introduced in 4.0

standards. Bluetooth classic supports a total of 79 channels, each given 1 MHz of bandwidth. The

total bandwidth of Bluetooth devices is between 2.4-2.4835 GHz on the ISM band. It also uses a

time division duplex scheme. Modulation modes include gaussian frequency shift keying (GFSK)

or differential phase shift keying. Bluetooth LE systems give channels 2 MHz of bandwidth for a

total of 40 channels. BLE operations are based on TDMA and FDMA multiple access schemes.

Bluetooth 5 supports error correction coding, resulting in a lower data rate but a more secure and

reliable connection. BLE devices transmit data on a specific time duration called an event.

 Zigbee - JG
Zigbee 802.15 defines a protocol for mesh communication between devices using low power.

Zigbee allows up to 250kbps data tranfer rate and is operable up to 1KM. Instead of connecting to

ethernet using an access point like WiFi, it uses a gateway which provides connectivity from the

distributed nodes back to the ethernet source. Each node is equipped with a wireless antenna and

communicate with the gateway over Zigbee. The nodes can also serve as routers to extend the

range of connectivity, also known as mesh networking. The mesh connects all the nodes to the

network and provides multiple pathways to the gateway. Even if one node in the network were to

go offline, another route around the mesh allows the devices to stay active. Since our product is

meant for a small indoor garden, we don’t necessarily need a mesh network to extend connectivity

range. Zigbee operates at the 2.4 GHz ISM band, so it would be a good solution to modifying this

tabletop garden IoT system into a large-scale smart farm with more plants than Bluetooth could

handle.

 Sub-1GHz Transceivers - JG
For home connectivity, there are some benefits to using sub-1GHz signals for transmitting data.

Sub-1GHz technologies offer advantages in range, power consumption, and reliability. For a

transmitter T and receiver R a distance d away from one another transmitting at a frequency f, the

received power PR of a signal is proportional to the transmission power PT divided by d2*f2. For

the signal to be received properly, the power received must be greater than a defined sensitivity

limit.

29

𝑃𝑅 ∝
𝑃𝑇

𝑑2𝑓2
 > 𝑠𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡

Thus, we can achieve longer range with the same transmission power if we reduce the frequency.

Because of their longer wavelengths, lower frequencies are better at traveling through obstacles

and around walls in a home. We can also achieve a larger distance by designing a more sensitive

sensor. There’s less bandwidth to cover with lower frequencies, and less noise at those frequencies

since 2.4GHz is often crowded with other nearby WiFi and Bluetooth devices. So we can get more

precise with the filtered analog signal we receive, lowering the sensitivity limit. To achieve the

same distance with a 2.4GHz signal, another node can be added to forward the signal, but this

increases the cost and complexity of the system. If our smart garden project needed to be suited to

connecting to an assortment of smart home devices, Sub-1GHz would be a better option. However,

since the plant sensors will be in close proximity to the garden, they wont need the extended range

benefits of Sub-1GHz.

 IoT - JG
The Internet of Things (IoT) is a highly growing topic in industry, as well as academia. IoT refers

to the rapidly growing network of devices that communicate over the internet to utilize the

advantages of being connected online. This emerging field of electronics allows embedded devices

to gather data from their environment using sensors and publish that data to an online database

where further analytics can be done. From there, the data can be presented back to the user in an

intelligent fashion that allows them to monitor any of their device remotely. With the rise of

internet-connected devices estimated to approach 24 billion by 2020, IoT technologies are soon to

become the standard for creating smart systems across the globe.

IoT has protocols at different layers of the network stack to make its magic happen. The ecosystem

in IoT is commonly presented in a 7-layer model, as in Internet of Things Protocols and Standards

by Tara Salman and Raj Jain. At the bottom, we have our market domain. This may be a smart

home which has its devices connected. These devices would make up the second layer and might

include a door camera, temperature sensors, or light control sensors. The third layer consists of the

various ways the data from the devices can be communicated across the internet.

WIFI can be used to stream the Door Camera using UDP, Bluetooth can connect the temperature

sensors to the thermostat and fans in the house, and NFC can be used to control the lighting with

the touch of a phone. Next in the fourth layer we have our database, where we integrate the data

gathered from sensors with previous sensor data, weather data, and cost tracking that we gather

with other resources. The data gets passed onto the fifth layer, where further processing can be

done. Computer vision analysis on the door camera data can detect and identify who is at the door.

Predictive analytics that combine temperature data with recent weather reports and monthly

electricity spending bills can determine the optimal cost-efficient way to regulate a home’s internal

temperature. The sixth layer contains the software that allows the smart IoT system to function

through software like an App or Android Things. The smart home can also utilize Amazon Web

Services (AWS) or Google’s IoT Core to access the cloud, which can support all of layers below

it. At the top of the stack, the seventh layer defines the service that enables the smart home, in this

case energy management. Alongside the system are security and management applications which

come with accessing the cloud.

30

Figure 5- IoT Ecosystem

 Publishing Messages - JG
With the growing demand for “smart” devices, we want our tabletop garden to connect to resources

and tools online in the cloud. Our smart garden will be fitted with a WIFI module that can

communicate through HTTP or MQTT. This will allow us to work with the newest cloud

functionalities available since they’re highly efficient protocols for IoT communication. Our first

goal will be getting our microcontroller to host a server in order to send data to and from the

microcontroller. MQTT is the most desirable protocol since it operates on a publish/subscription

framework. Unlike a client-server architecture, in which the devices communicate directly, the

publish/subscription method allows sensors to publish messages for an MQTT broker to send to

devices subscribed to the incoming messages. This will make it easy to publish sensor data from

our garden to the cloud, where a web server subscribed to our sensors can pick up on the data.

Likewise, we can control our device from a web server by publishing tasks that our device will be

subscribed to, such as turning on a water pump to water the plants even when on a computer away

from home.

Figure 6- How the pub/sub MQTT mechanism works

31

 PubNub - JG
One way that we can communicate over a publish/subscribe based network is with PubNub.

PubNub delivers the key building blocks for needed for real time, secure connectivity. Data gets

published by our sensors, and the devices subscribed to that data will receive that information in

real time [21].

The packets of data are sent in messages that get published to channels in PubNub. They can

contain any serializable data including objects, arrays, numbers, and strings. Strings may contain

any UTF-8 character, single-byte or multibyte and single message sizes can scale up to 32KB. It

is recommended that the message gets formatted in JavaScript Object Notation (JSON), a simple

data-interchange format that is easy for humans and computers to understand. PubNub provides

SDKs that will turn outgoing JSON objects into strings for serial communication over the PubNub

network.

To organize incoming data, messages that are sent into PubNub are placed on a channel. Devices

subscribed to the channel quickly receive messages published to it. Unlike older messaging system

designs, PubNub allows our device to subscribe to an unlimited number of channels through a

single connection, simultaneously. So, each sensor we add can have its own channel, our master

MCU can be subscribed to the group of sensor channels, and our global web application can

communicate over all the channels. Each channel is identified by its unique key set for publishing

and subscribing. PubNub limits channel and channel group names to UTF-8 compatible characters

and limit their size to 92 characters in length.

While our data is in midstream, we can deploy serverless PubNub functions. Common features

with pre-built blocks of code include filtering, language translation, third-party API integrations,

and other analysis to enhance our projects cloud connectivity features. PubNub provides a GUI for

monitoring and creating these functions, with documentation for how to set them up.

Channels in PubNub are divided into four general topologies: Unicast, Broadcast, Multicast, or

consolidation. Each topology has multiple ways of being implemented. For unicast, or one-to-one

connections, there are three ways of implementation. A simple solution is to have device A and

device B publish and subscribe to a common channel, like “deva_devB-ch”. This works but might

not be secure enough for the user. Another way is to have each device subscribe to their own

private channels but publish to each other’s channel. For example, device A will subscribe to

“devA-ch” and publish to “devB-ch”, andlikewise device B will subscribe to “devB-ch” and

publish to “devA-ch”. A third solution can implement both ways of connectivity, where both

devices publish to each other’s channel, as well as a global channel for easy history retrieval. This

third method also makes it easier to divide up authorization roles.

32

Figure 7- PubNub channel topologies

Channel groups in PubNub allow for a user to subscribe to and receive data from numerous

channels very easily. Depending on the implementation for our smart garden, having channel

groups might be useful. For instance, if each plant in are garden are equipped with a group of

monitoring sensors, it might be useful to assign a channel to each plant and form a channel group

with them. This way our sensors can publish data to the respective channel for the plant they are

monitoring, and our web server can receive the information from all our plants by being subscribed

to the channel group.

PubNub also enables us to store the last known state of sensor readings through presence. A

“presence” channel is made for each channel we create and will return specific presence events to

applications subscribed to them. Presence events can return state change messages that can be used

to alert a user about a sensor going off. Webhooks are supported for presence events, so when a

state change is detected, the webhook can be configured to get the new values of our sensor or

alert the user in some type of way.

Security is an important aspect of embedded systems. PubNub has security measures that will keep

data safe. At the legislative level, PubNub is HIPAA compliant, meaning our connection is secure

enough to even send medical data. It is also EU-US Privacy Shield compliant, meaning our

messages aren’t getting stored somewhere unsafe. PubNub helps eliminate attacks with data center

routing and intelligent Transport Layer Security (TLS) encryption. Point-to-point encryption is

provided by the PubNub SDK libraries. To turn on these extra security measures, we enable a TLS

parameter passed into the instance of a PubNub object when we first initialize it.

To visualize data gathered and transmitted with PubNub, we can use Freeboard.io. Freeboard

provides ridiculously simple dashboard GUIs for our data. We can add different types of widgets

such as line graphs, gauge dials, text, and indicator lights to represent our data. The widgets are

set up to parse incoming JSON files from the channel it is subscribed to. To link channels as a data

source in Freeboard, we simply provide the channel name, PubNub subscription key, and select

PubNub as the type.

33

 Communication Design - JG
There are several ways for us to design the communication system for our project, but we must do

the research to figure out which one will be the most fruitful based on the timeline we have and

the abilities we have as engineers.

 Developing in CCS - JG
Using CCS, we will need to set up the proper development environment. The CCS App center and

resource explorer allows us to download the correct tools and drivers needed for the project.

Communicating over MQTT will be the best method for transporting data from the microcontroller

to the cloud, so we will first need to set up MQTT on the device. To support multiple thread

functionality, an operating system must be used. The TI-RTOS is available for download through

the resource explorer. After downloading and installing the TI-RTOS SDKs, or other real-time

operating system drivers, we can download the MQTT demo to get started. There will most likely

be bugs to resolve when dealing with CCS, but with the help of various resources online, we can

see how other developers resolved these issues. The MQTT client code will need to be flashed to

the device using Uniflash, a TI program for storing applications in the internal flash memory of

our device. Because CCS mostly uses C, we will rely heavily on pre-built libraries and header files

that define helpful functions for communication. Unlike energia, which is written in a more object-

oriented sense, CCS will require a more adept sense of programming to get the project on its feet.

However, CCS comes with more freedom in that the code doesn’t have to work on a loop-based

system. This will give us the ability to incorporate interrupts to send data when a specific condition

is met.

 Developing in Energia - JG
Since we want to use a Texas instruments microcontroller, using tools TI provides examples and

tutorials for is a reasonable option. Venturing into IoT will be a difficult task on its own, since the

methodologies used haven’t necessarily been covered directly by our undergraduate curriculum.

However, as engineers we must learn to apply what we know to solve novel challenges ahead of

us. While it might be too much to design an entire IoT software from scratch, there are resources

available that can do most of the heavy lifting. TI has paired with Temboo to provide machine-

generated code for the CC3220 to interact with a handful of RESTful APIs [22]. To use Temboo,

we first choose which MCU we are using, and how its connected. Depending on which API call

we try to use, other information regarding authentication, source/destinations, and URLs to

websites may be needed. Temboo then generates code based on the information we provide that

can be copy and pasted into Energia, where we can upload it to our board. Using Temboo, our

MCU can interface with APIs such as Google sheets to store data, Twilio to send SMS text alerts

and calls, or other APIs we can write ourselves if needed.

 AWS Cloud Solution - JG
To set up an AWS solution to cloud communication, we must download and install the right tools

to set up our project development environment. Either CCS or IAR Embedded Workbench IDEs

can be used. Using CCS, SimpleLink WIFI CC32xx Wireless MCUs must be installed. We will

also need to install the SimpleLink CC3220 SDK, which contains essential drivers for the

34

CC3220SF MCU and the latest service pack. CCS Uniflash will be used to upload the service pack.

The next step would be to configure the WIFI settings for the chip, either with the Amazon

FreeRTOS demo, which has its own documentation on the AWS website, or using the SmartConfig

app from Texas instruments [23]. Once the demo code gets built, compiled, and debugged for

errors, we should be able to monitor MQTT messages on the cloud in the AWS IoT console. To

subscribe to the MQTT topic, we will need to make a AWS account, sign into the AWS IoT

console, and subscribe to the demo’s topic. After getting this framework set up, we can then alter

the code to communicate with our sensors, have the sensors publish MQTT messages to be viewed

on the AWS console, and have our console set different states on the device. Eventually, we expand

our infrastructure to create a webserver to serve as a user-friendly GUI for data visualization and

device control.

Using the TI CC3220SF microchip, we can learn from various online tutorials and solutions.

Company’s like Google and Amazon both recommend the CC3220SF-LAUNCHXL Development

Kit to get started on a cloud connectivity. The embedded software should allow the device to gather

sensor data from the plants in our smart garden and post it to a web server online.

Figure 8: Communication Model

 Google Cloud Solution - JG
Like Amazon, Google also recommends using the CC3220SF Launchpad as a starter development

kit. The online tutorial provides an easy way to begin developing an IoT device using the CC3220,

Mongoose OS, and Google IoT Core. Prior to writing code for the device, we install google cloud

SDK for its command line functionalities, and Mongoose OS to program the microcontroller.

Using the gcloud command line feature we can create the project on IoT cloud, set up

authentications, make Pub/Subtopics and subscriptions, and construct a registry to store the

device’s data on the cloud. Then, using Mongoose OS we can flash JavaScript code to the MCU

along with WiFi information. The code can be altered in the Mongoose OS script editor as needed.

Following the tutorial Google has for the CC3220, we can first begin implementing IoT Core by

learning how to send device state updates to the cloud with an internet button, as well as changing

the LED state of the board remotely through the cloud. Once these features are implemented, we

ca begin to shape the device into a smart garden. For example, by replacing the button with a

sensor, we can trigger updates to the cloud when a threshold is reached. The information sent over

MQTT is represented in a json structure, making it easily transferable over Google’s resources.

35

 Communication challenges - JG
With the features we want to implement in our smart garden, there will be a few challenges to

consider with communication. With WiFi, many internet service providers (ISPs) will block

unprotected and unauthorize devices from accessing the network. For testing purposes, we can use

a phone hotspot, but to make this a commercially available product, we will need to figure out how

to connect the device to a user’s home internet without being blocked by the ISP. For Bluetooth,

there might be challenges connecting multiple devices to Bluetooth at once. We want Bluetooth

sensor nodes to monitor the state of each plant we have in the garden, or at least each soil bed we

have. We expect to have at least two sensor nodes communicating data over Bluetooth to our main

MCU. We’ll need to make sure the master MCU can connect to all the sensor nodes we have over

Bluetooth, either one by one, or all at the same time to retrieve sensor data. Also, we want these

Bluetooth sensor nodes to operate in low power. Putting our sensor nodes into low power mode

will restrict the operational functionalities. Using the MSP430G2553 as the main processor for the

sensor nodes, we can put the device into a low power mode to wait for the clock to wake it up.

However, if the user wants to manually retrieve data at any point in time, we should accommodate

Bluetooth low power mode (LPM) wake up so that we can wake up the device wirelessly. To have

our sensor node be able to react quickly out of LPM for a Bluetooth request will be difficult, and

we might have to sacrifice keeping the sensor nodes in ultra low power mode to let the user request

data at all times, or sacrifice having real-time user readings in order to save battery life on our

sensor nodes.

 Programming Languages - JG
The various programming languages utilized in the indoor greenhouse system will be discussed

and justified in this section. This primary languages used in this project are C/C++, Python,

Assembly, and JavaScript.

 C/C++ - JG
One of the most widely used programming languages for embedded applications is C/C++.

Designed to be portable, C code can be adapted and arranged for many MCUs. IDEs such as Code

Composer Studio, can be used to program TI microcontrollers in C. C/C++ code can also be

uploaded to the device using the command line, with the right configuration set up. New Online

IDEs such as CCS cloud can be used to flash C code to a device from online. Because C/C++ has

been an industry standard for many embedded applications, there is a copious number of projects

available for us to use as a reference. However, C code is often written in a procedural manner,

and doesn’t always work correctly from one device to another. For embedded developers,

Embedded C was created to interface with different kinds of devices, supporting features such as

fixed-point arithmetic, the ability to differentiate between memory banks, and basic I/O operations

[24]. The use of C for embedded programming often includes a variety of libraries, or SDKs to

help make the code neater and reusable.

36

 Python - JG
As devices are becoming more capable of handling higher-level language code, python has risen

to the forefront of microprocessor development languages. Python outranked C++ as the most

popular programming language in a report by IEEE [25]. MicroPython is a software

implementation written in C that can translate Python code to instructions that can be run on a

microcontroller. There are examples of using MicroPython online that we can use for getting

started, but it depends on what processor we pick. Raspberry Pi and Arduino devices are often

compatible with python code, and many hobbyists use it to build rapid prototypes. However, since

python is interpreted, it might not be as fast or effective as programming in C.

 Assembly - JG
Programming in assembly would give us more control over the MCU, but would hinder the

portability of our code. Assembly interacts directly with the registers contained in the processor,

there’s a steep learning curve to understand assembly that our group doesn’t have experience in.

The code is hard to read for unfamiliar developers, and functions turn out to be long and tedious.

We would prefer to use a higher-level language to take advantage of code that is already written

to interface with our MCU. Assembly code might run more efficiently on our device, but the level

of optimization that languages such as C or python have achieved make the benefits of using

Assembly negligible.

 JavaScript - JG
We can program in JavaScript to set up an MQTT Client and communicate with APIs across the

internet. A JavaScript MQTT client can also pass along messages to applications running Node.js.

 AT Commands -AL
We will be using AT commands to control the actions of the BLE module, such as putting the

module to sleep, seeing the address of the module within the memory, changing the mode from

master to slave, etc. All of the commands in this language starts with “AT” or “at, thus the name

AT commands. As a quick background for these commands, many of the commands that are used

in controlling dial-modems.

 Software – JG
In this section, the various software platforms for programming and design will be discussed to

outline the framework and basis of design for this project.

 Code Composer Studio - JG
Code Composer Studio (CCS) is an integrated development environment (IDE) used to program

various Texas Instrument (TI) microcontrollers and embedded processors. The software provides

tools used to develop embedded applications such as compilers and libraries for specific hardware,

37

as well as a project build environment, source code editor, debugger, console output window, and

other amazing features that make setting up working software easy for developers. The interface

is designed to be user intuitive so more effort can be put into writing the code, rather than spent

setting up a project environment over the command line. This software is available for download

on TI’s website and is now available on the cloud.

To set up MQTT using CCS, we first need to have the right compilers up to date. The CCS App

center and resource explorer will have most of what we will need. First, the right Ti-RTOS drivers

will need to be installed. These will need to be stored in the same folder as the SDKs for CCS.

Next are Free RTOS drivers, AWS FreeRTOS is also compatible. After setting up our drivers, we

can also download an mqtt client demo from the resource explorer. We’ll first need to set the local

access point parameters, the WiFi and password of a local network, and define them in a header

file. Subscription topics can be defined, and the port number needs to be set. In order for MQTT

to operate, there needs to be a defined MQTT broker.

TI Recommends using eclipse as their open source client code will work on port 1883. After

editing our code, we can compile and run the code on our microcontroller. We can publish topics

to the device by using defined web link extension such as /cc3200/ToggleLEDCmdL<x> to toggle

an LED. The LED indicated by x should turn on if set up properly. ICPDAS MQTT for iOS can

be downloaded to test out our device on a mobile phone subscribed to the topic. By subscribing to

the WaterLevel topic, we can enable the MCU to send a notification to the app when a water level

threshold has been reached, notifying the user that their plants need more water. The CC3220

SimpleLink WiFi chip can even run a local MQTT server and connect to the internet as an edge

device. Since we would like to implement a star network, this processer can easily implement

software that will let it extend MQTT communication out to other sensors we hook up [26].

38

Figure 9- MQTT Client-Server Demo [26]

 Energia - JG
Like the Arduino IDE, Energia attempts to make programming TI MCUs easier with a high-level,

object-oriented framework of programming. Energia has example projects we can use to

experiment with as we develop solutions to make our device communications work. Energia is

available to download for free and can easily be installed on a Windows, Linux, or Mac computer.

The software supports compilers for a variety of TI MCUs and uses the mspgcc compiler.

 Uniflash - JG
CCS Uniflash is a tool used to program on-chip flash memory on TI MCUs. It has a GUI, command

terminal, and scripting interface to create and load new files onto a chip’s memory. Some TI WIFI

boards need an additional emulator board in order to be programmed properly. For example, the

CC31XXEMUBOOST is needed to update the firmware stored in the CC3100’s serial flash.

Uniflash makes updating the firmware easy for embedded developers, and will likely be needed

for our project.

 Operating systems - JG
Most embedded commercial applications use an embedded operating system to schedule tasks.

Embedded operating systems are often designed with resource-efficiency and reliability in mind.

Because embedded devices are constrained by memory, efficiency comes at the cost of losing

some functionality. The type of OS that is frequently used is called a real-time operating system

39

(RTOS). Operating systems can aid our project by managing multiple threads at once. For each

sensor we connect to the microcontroller, we can add a thread to poll sensor values. The operating

system can be programmed to start and stop threads over WiFi.

 Why Use an Operating System? - JG
To gain better control of an embedded chip’s processing power, software developers may write

the application code in assembly. In assembly, the programmer can specify exactly how memory

gets utilized on the device. However, assembly code isn’t always portable, and gives developers a

hard time when trying to integrate the device with others using higher-level languages. I couldn’t

imagine sending JSON payload through WiFi to another device using assembly. For this reason,

we can design an operating system to manage the nitty gritty memory optimization for us, while

we comfortably develop code in C. However, unlike desktop operating systems, embedded

operating systems do not load and execute applications, restricting the device to running only a

single application.

 TI-RTOS - JG
TI-RTOS is a scalable embedded tools platform for TI devices. It supports a real-time multitasking

kernel (SYS/BIOS) and supports additional middleware components and device drivers to make

up a complete RTOS [27]. TI-RTOS doesn’t come pre-installed on TI devices, nor do all TI devices

support an RTOS. If we want to incorporate TI-RTOS into our project, we must pick an MCU with

enough processing power to handle an operating system, such as the MSP432 which comes with

a 32-bit ARM processor. TI-RTOS can be installed through the Code Composer Studio app center.

The TI-RTOS components include source files and SDKs that come with pre-compiled libraries

and examples.

 AWS FreeRTOS - JG
First released in November 2017, Amazon FreeRTOS is an MCU operating system design for

connecting lightweight embedded devices to AWS IoT core. This means we can have sensor

devices connect directly to the cloud, without the need for a intermediate gateway [28]. Amazon

Free RTOS augments the existing FreeRTOS kernel with libraries for connectivity, security, and

over the air updates. The operating system is typically flashed to devices as a compiled image of

all the components required for the device’s applications. This image packs the combination of the

FreeRTOS kernel needed to manage the devices memory, software libraries provided by amazon

to connect with AWS IoT Core or other AWS cloud applications, drivers and board support

packages for the hardware, and the applications written for the device by a developer. A visual of

the AWS FreeRTOS architecture is show in this figure.

40

Figure 10: AWS FreeRTOS architecture

 Cloud – JG
Embedded applications are often constrained by memory space and processing power. By

connecting our device online, we can offload all the data we gather into the cloud, so we don’t

have to waste power or constrain our memory storing it on the device. We also get access to

external APIs to help run analytics on our data if we wish, resources otherwise not supported by

our microcontroller alone. The “cloud” is an umbrella term that refers to the vast amount of online

resources we can use for the project.

 CCS Cloud - JG
Though there are many microcontrollers to choose from, TI offers hardware familiar to our group

while offering a robust set of functions to implement an IoT system. While building our software,

we can use CCS cloud to compile and flash code from any device if the hardware has

a WIFI connection. The code gets stored in the cloud as well, so we won’t have to worry about

keeping our offline copies consistent with each other. It also comes with user friendly tools to get

a simple web-based GUI set up, and combined with websites like Temboo, can open a gateway to

other external APIs we can use for data analytics and storage.

41

 Security - JG
There’s no “S” in IoT, but Security is one of the biggest concerns with IoT devices. In 2016, a

massive hack to the internet took advantage of unsecure devices and took down large portions of

the internet in what has been called the Mirai Botnet attack. The hackers scanned the internet and

found millions of unsecure IoT devices to take advantage of. A massive attack was launched

against DYN, the domain services for the entire internet and down went the internet for a few

hours. At the micro-level, there was an attack on a casino in 2017 where a hacker found an unsecure

fish tank temperature sensor, got into the internal network, and pulled out 10 Gigabytes of high

roller data from the database. They lost millions of dollars and credibility just because one device

wasn’t properly secured. Since we want our device to connect to a cloud database, the connection

needs to be secure, so our project doesn’t contribute to macro-level internet attacks or expose a

user’s home internet to malicious software.

 Google Cloud Platform - JG
Using Google IoT core, data can be securely sent into the cloud and passed on to other applications

for further processing. Once in IoT core, the data is stored online, eliminating the risk of losing

data if a transfer to a database gets corrupted midway. Google Cloud pub/sub implements the

MQTT protocol that will control and listen for information from a device. Pipelines like Cloud

Functions are a quick way of passing information on to other applications needed to do analytics.

Cloud Firestore can handle syncing data across multiple connected devices and allow for flexible

scalability. Firebase can be used to securely host a web application for user control and observation

of an IoT system. The web application can be integrated with an Angular Frontend to interface

with Google Sheets, where data can be represented for the user. Our project might only take bits

and pieces of what google services has to offer, but the project will remain flexible for future

development and scaling.

Figure 11: Example Google IoT Device Framework

42

 Amazon IoT Services - JG
Another cloud service is Amazon Web Services (AWS) which provides IoT tools to monitor the

states of things about a device so further reasoning on the data can be done to solve novel problems

[29]. Starting with our devices, where most of our data will be generated from, Amazon FreeRTOS

provides an IoT connected operating system for microcontrollers that allows easy connectivity

from low power devices on a local network to more powerful devices that connect to the internet

over Amazon IoT Core. Since microcontrollers usually have limited computing power and often

perform simple, functional tasks it is especially helpful to offload the data gathered to the cloud.

The operating systems that run on microcontrollers often do not have the functionalities to connect

to local networks or the cloud, which makes designing IoT systems difficult. However, AWS

FreeRTOS helps solve the problem by providing an operating system and other software libraries

to securely connect to the cloud or other edge devices. This way we can collect data from them for

IoT applications and eventually further process the data on a more powerful system. If we want

our device to act locally, AWS IoT Greengrass can make that happen. In the case a device gets

disconnected from the network, Greengrass ensures the data stays securely in sync even when not

connected to the internet.

To gain access to the cloud, our device will need to access AWS IoT core, the backbone for

enhancing the microcontroller’s capabilities with online functionalities. AWS IoT core is scalable

to accommodate for millions of connected devices, which allows our smart garden to easily

integrate itself into a smart home with an existing framework. It supports HTTP, WebSockets, and

the most popular communication protocol for IoT devices, MQTT. Even if other connected devices

are using different protocols, AWS IoT core manages that too. Security features include

authentication and end-to-end encryption throughout the transfer of data, nothing gets exchanged

between devices and AWS IoT core without proven identity. The latest state of connected devices

gets stored in AWS IoT core, making it appear to be online even if it is disconnected or in a low

power state. This allows the user to set a device state to be implemented when the device

reconnects, without having to provide overhead for making sure it happens real-time.

Once uploaded into AWS IoT Core, other services can act upon the information. For instance,

AWS IoT Events can be utilized to respond to sensor data triggers. By defining the conditional

logic that describes an event to be listened for, such as a water level sensor threshold when the

garden needs to be refilled, AWS IoT events can detect and trigger the appropriate response to

send a text message to the user, or turn on a notification light on the system.

 GUI - AL
To have a way to communicate with the controller and all its peripheral devices we will plan to

have a GUI in the front of the Smart Tabletop Greenhouse. This will serve as a local interface for

a user to be able to access and control all the environment changes in our greenhouse, look at data

provided from sensors, and provide a troubleshooting system that will notify the owner if anything

is out of the ordinary for the greenhouse.

To do this we plan on using an application on TI cloud, as we plan to have our controller be from

Texas Instruments. In addition to the GUI Composer application being the main complier for TI

components, there are also features in this application to be able to easily access and show data

43

through the chip via graphs along with numbers and words. There are even objects within the

application that simulate thermometers to make ease of custom event handling as our data is

processed. For our error messages, the composer application has features where pop-up windows

can be created just as if on a regular PC to notify its users.

Figure 12: TI GUI example

Other features that we plan to have for this GUI is have an option to send the data from the

connected sensors in its system to either be stored locally or to be sent out to the cloud to be

offloaded and be observed from a separate device. This functionality was added so we could easily

store the information observed from the peripheral devices just in case that the ARM processor did

not have enough memory to hold all the data. As one our group members wanted to have more

experience with Cloud data storage and communication, this seemed like a perfect task to add to

our project.

 Bluetooth Modules - AL
Our choice of communication between our parent and children microcontrollers are via Bluetooth

so there were many considerations in which modules to use to incorporate our idea. We had a

slight debate on whether we were to use regular Bluetooth or BLE so we did research on a few

modules that had some options for both types of communication. Many of these modules were

44

simple enough where if we were to have 5-6 pins (Vcc, GND, TXD, RXD, enable, and state) we

would able to fully integrate the separate module into our microcontroller configuration via

jumpers.

 DSD Tech HC-05 - AL
We first looked at this module as it was able to be a master and a slave, two in one module. It uses

the CSR BC417 as its Bluetooth chip and follows the V2.0 SPP protocol standard. Though AT

commands we would be able to switch easily between master and slave mode. DSD Tech also had

a nice software to easily modify the default baud rate of 9600, Bluetooth name, pairing password

and role. The only drawback was the working voltage was between 3.6V and 6V which be

inconvenient to adjust all of our power supplies incorporate the module.

 HiLetgo HC-05 – AL
While this module’s factory setting is in slave mode, one could set it to master mode as to be able

to connect other Bluetooth 2.0 devices to it. The transceiver master slave integrated module has an

effective transmission distance of 10 meters in an open area, which is more than enough for our

enclosure’s constraints. The module can be added our design easy enough, but does not work with

iOS, and although this might not seem like a problem at the moment, in future plans, we might

want to consider creating an app in the Apple Store to be able to interface with SmartLeaf.

 HiLetgo CC3541 HM-10 – AL
This Bluetooth module adopts the CC2541 chip of American TI Company, has a 256Kb of space

and follows the V4.0 BLE Bluetooth specification. The input voltage needed for this device can

be either 3.3V- 5VDC which is perfect for an idea of a child microcontroller that is to be powered

by coin celled batteries. The module supports SPP Bluetooth serial port protocol and UART

interface. The BLE technology that is incorporated with this board is ideal for our uses for

SmartLeaf as we plan to use the module that draws the least power and is able to connect quickly

to our devices.

Through tutorials and videos online, we were able to find that if were able to implement that AT

commands correct and interface with the microcontroller correctly, the module would provide us

with a better service that a regular V2.0 Bluetooth module. When the device is not being paired

with other devices and is sending and receiving data, it will draw around 10mA. When we put the

into sleep mode, which is not possible with V2.0 devices we would find that the module draws

around 0.12mA. The device also communicates quicker than the device shown in DSD Tech HC-

05 - AL and HiLetgo HC-05 – AL and works perfectly as a device that only intends to send data

occasionally. This device can be found on Amazon and even comes as a two piece set for less than

$10, and is within the budget and gives us the best value per module.

45

 LEDs -AL
We decided to go try to go with an aesthetically pleasing look while also being a reliable source

of light for the plants inside our structure. The LEDs we were looking for were to also try to have

a low power consumption as to preserve the longevity of our project. To do this we had several

choices of LED light strips to choose from.

 Adafruit RGBW LEDs -AL
One of the first LED strips that we looked upon was Adafruit’s analog RGBW LED strip. This is

a 60 LED-per-meter strip that even had a cool white and was even weatherproof as it had a plastic

covering over the LED reel. The way that there are wired though, we would need a 9-12 VDC

power supply, a ground, and a RGPW pins to turn on any of the colors.

 CHINLY LEDs -AL
Next, we considered CHINLY’s LED reels. These reels had nearly all the same functionalities as

Adafruit’s; RGBW potential LEDS with a 24-bit color display, with a 3-pin connector for the

power, ground and signal ports, a waterproof but had a drastic differences in pricing per LED and

also used 5VDC instead. Other than those two companies, the other potions on the market were

more or less the same of what was described above but were either more expensive, used more

energy per LED, or was manufactured in a different country which would drastically change the

timeline of when our components would arrive.

So it was a natural choice to choose CHINLY as our main supplier of LEDs, as they had a package

for a 5 meter, 300 RGBW LED reel on amazon, which would give us plenty of spare LEDs to do

testing on, an easy to use software development code that would easily make the LEDs do what

we want to do, consume less power as a whole, and save us money per LED. Many hobbyist have

also done projects with the same LEDs and have many examples to be able to reference if there is

any trouble in the future in implementing them.

 LCD Screen -AL
Our group also decided to look for a single LCD screen that was to be connected to the main ARM

processer to be able to provide the user a way to interface with the GUI we were to develop. The

optimal LCD screen that we had in mind was a 3.5 inch to 7 inch screen that had touchscreen

capabilities, was able to be controlled from our ARM processor, had either SPI or I2C interface

capabilities, and have an open source libraries to be able to configure, upload and adjust code from

the ARM processor. We looked in many sources on the internet and came to find that many of the

LCD screen were more on the expensive side. Some of the screens we looked into were TFT (Thin

film transistor), had the capability to have more pixels on a smaller surface.

 Adafruit LCD - AL
With Adafruit’s 3.5” TFT 320x480 LCD screen, it had a 6 while-LED backlight with individual

RGB pixel control, had a build in controller to help with RAM buffering, SPI and 8-bit interfacing

46

and a full open source graphics library that can be easily used to implement our ideas for a GUI.

Power consumption is also a plus with this device, 3.3VDC and 5VDC compatible with a 150mA

LDO (low-dropout regulator), so it doesn’t use as much power as the bigger TFT screens and will

have less of a burden on the ARM processor if chosen. Another reason to use this particular

component is because Adafruit does a really good job on making its product user friendly and

provides many tutorials and examples on how to program and use their products.

 Booster pack LCD for MSP432 - AL
There was also an option to purchase the BOOSTXL-K350QVG-S1 Booster pack for the MSP432.

This is a Kentec QVGA Display Boosterpack that is an easy-to-use plug-in module that adds a

touchscreen color display to the MSP430. It too is a 3.5-inch screen but has a 320x240 resolution

instead. It also has a SPI interface and a LED backlight driver circuit. The only advantage in getting

this backpack is that it would be easy to implement on top of our already existing MSP430 and

would be a tad bit cheaper than the Adafruit TFT. The problem being that the booster pack has a

horrible resolution rate compared to that of the Adafruit TFT.

 Fans – DM/MM
Main things to consider when looking at our project, we need to ensure that the plants that we’re

going to be growing will survive. Being a tabletop greenhouse, the interior will warm up and to

equalize this, we’ll be adding fans to the tabletop greenhouse for circulation and cooling purposes.

It is expected that two fans will be featured in the final design, on either side of the unit in order

to encourage air circulation quickly and effectively. As this is an indoor system, the fans need to

be quiet enough as to not cause a disruption/distraction in the surrounding environment, yet

powerful enough to make an impact as an environmental control.

(MM) Any fans considered for this project should have an operating voltage in the range of 5V-

12V to be easily compatible with the power supply. Luckily, various manufacturers sell fans with

these operating conditions, largely thanks to hobbyist computer builds. Nevertheless, Table 12

shows the viable options for use in the SmartLeaf system.

Table 12- Fan Comparison

Fan Model # Manufacturer Distributor
Power

Requirements
Noise Airflow Cost

RA04010HD1 RDK Amazon 12V, 90mA 28 dBA
6.08

CFM

$13.99

(set of

two)

490-CFM-

5010-03-22
CUI Mouser 5V, 280mA 36 dBA

16.07

CFM
$7.90

CFM-6015-

13-22
CUI Mouser 12V, 220mA 39 dBA

27.50

CFM
$8.74

47

 RDK Brushless Cooling Fan - MM
This option comes in as the most affordable at about $7 per fan. The RDK fan also has low noise

and load current demands. It is also available on Amazon Prime with free 2-day shipping,

amounting to greater savings. Although convenient, Amazon typically does not provide datasheets

for additional useful information. The major concern, however, is that this device may be

insufficient in providing enough airflow for the greenhouse, providing only 6.08 cubic feet per

minute (CFM). This is likely insufficient to act as a means of control for temperature and humidity

conditions within the environment. For this reason alone, it is not a viable option for the SmartLeaf

system.

 CUI DC Axial Fan – 5V - MM
This option from Mouser is able to deliver more airflow than the previous option, measuring in at

16.07 CFM. While the greater noise is a concern, the power requirements make a valid argument

for this device. The distributor, Mouser, also provides datasheets for their products, which would

be helpful in the design and construction of this unit. Available in a 5V input option, there would

be more room for growth in other areas of the project. While a viable option, there is still the

possibility of there not being enough ability to quickly control the airflow and correct

environmental conditions. In this case, it may be more feasible to select a more powerful fan as a

basis design and adjust the revolutions per minute through pulse width modulation (PWM).

 CUI DC Axial Fan – 12V - MM
This fan comes from the same manufacturer and distributor as the device above, but with greater

ability to adjust airflow, measuring in at 27.5 CFM. While requiring more power and adding more

noise, this model has lines for control signals as a selectable option. Specifically, the design team

would have the ability to include a PWM line, which could eliminate the need for an additional

external controller. Upon this fan’s arrival, the team can determine the appropriate speed and noise

allowed for the system. For this reason, the CUI DC Axial 12V fan is selected for use in the

SmartLeaf system.

 Pumps – DM/MM
Since, this is a “smart” tabletop greenhouse we’re going to attempt to make the regulation of the

water autonomous via a water pump of sorts. We’re planning on setting up our soil moisture

sensors such that when the data reads below a certain threshold that we manually set for the

moisture, the water pumps would be signaled to activate and water the plants near where we placed

our soil moisture sensors. This pump that we’re going to use will more than likely be installed with

a tubing that will be hidden from plain view. The tubing will be attached to the top our tabletop

greenhouse that’ll be just lined up with where we’ll be placing our plants. The plants themselves

will be positioned near the soil moisture sensors and more than likely each plant will have their

own individual sensor to avoid inconsistencies in the soil itself when it comes to the moisture

content. If we ended up facing inconsistencies such as this, we could potentially set the sensors to

a threshold that would be considered inaccurate which could trigger the pump to give more water

than the plant needs or vice versa.

48

(MM) Various manufacturers make pumps with operating conditions at and below 12V that could

fulfil the watering needs for this project. Pumps of this nature are typically used for aquarium

filtration/circulation and fountain features; largely compatible with microcontrollers thanks to

hobbyists in these areas of interest. Table 13 compares some accessible options for pumps of this

type.

Table 13- Pump Comparison

Pump Manufacturer Distributor
Power

Requirements
Price

Submersible Mini

Pump
Ledgle Amazon 12V, 300mA $8.99

Submersible

Brushless Water

Pump

Daniu Banggood 12V, 400mA $7.88

Peristaltic Liquid

Pump
Adafruit Adafruit 5V, 500mA $24.95

 Ledgle Submersible Mini Pump - MM
This 12V pump has relatively low demand current and is conveniently available for free 2-day

shipping via Amazon Prime. Amazon has additional warranty provisions for this product, making

it a viable option for use in the SmartLeaf system. The downside, however, is the comparatively

higher voltage requirement. A 5V pump would be ideal to conserve power, but luckily the power

supply used in this project was selected for its scalability, and a 12V pump that works well with

the other systems may be justification for using this excess power. The Ledgle pump has been used

it similarly-sized greenhouse projects as a means for plant watering, which has added appeal.

 Daniu Submersible Brushless Water Pump - MM
The Daniu pump is extremely similar to the Ledgle pump; having the same voltage requirements,

this pump has a comparable – albeit higher – power demand. The load current for this device is

100 mA greater than the previous, which is a drawback. Additionally, while this pump is slightly

cheaper than the Ledgle option, shipping costs will exceed the price of the latter. More time for

shipping would have to be accounted for, and an unfamiliar distributor may not offer replacements

or refunds in the case of defective or broken equipment upon arrival. For these reasons, the Ledgle

pump is the preferred option.

 Peristalic Liquid Pump - MM
Unlike the two previous pumps discussed above, this device from Adafruit is a peristalic pump,

which works by compressing the attached tubing containing the liquid being moved rather than

impelling it directly. This ensures that the liquid does not make contact with the pump, maintaining

a sterile system ideal for applications in the food and agriculture industry. The lower voltage

requirements make this device appealing, but the price is a drawback. Overall, the unique

49

functionality of the peristalic pump does not offer enough value to the project to justify the

excessive cost. Pumps that come in contact with the water being transported are not considered

unsanitary by any means, and any produce grown or purchased is expected to be washed prior to

consumption, making the added benefit of a sterile system redundant. For these reasons, this device

was not selected as the basis of design for this project.

Out of the two remaining options, the Ledgle submersible pump was selected for use in the

SmartLeaf indoor greenhouse system on the basis of cost and convenience. Amazon Prime’s free

2-day shipping allows the design team to get access to the pump much quicker than purchasing

from other distributors, and there is enough documentation and tutorials/examples including this

type of pump on the internet to make up for a lack of engineering datasheets.

 Humidifier - MM
A humidifier is needed in the SmartLeaf system in order to raise humidity and cool the internal

environment of the greenhouse when necessary. The humidifiers considered for use in this project

are typically used for aquariums, terrariums, or garden fountain features. There are specific models

used for the average greenhouse, but those are likely too powerful for use in the indoor system.

Although the humidifier will be controlled based on sensor readings, if it increases the air moisture

too rapidly, the fans would be required to run more often to correct the condition, leading to more

power consumption and audible noise than necessary. Given the small and fully enclosed volume

needed to control, as well as the relatively low humidity level needed to maintain – around 50%-

60% relative humidity, a low-power humidifier should be acceptable.

While several manufacturers offer similar units that could potentially be used in the SmartLeaf

system, there is a notable lack of options and flexibility with those offered. The same type of 5V

diffuser disk with attached driver is sold by many distributors, but there are no notable differences

amongst this type. For this reason, fewer options are compared to eliminate redundancies. The

following sections serve to compare and select from these options. Table 14 displays data about

the two humidifier types.

Table 14- Humidifier Comparison

Model # Manufacturer Distributor
Power

Requirements
Price

B00PAK245E AGPtek Amazon 24V, 1A $9.99

11434 IC Station Amazon 5V, 400mA $5.99

 APGtek Aluminum Mini Mist Maker - MM
This humidifier type is of interest due to the ease of use; it is able to be submerged to produce

humidity, and for basic operation it does not require a driver. However, this device – and the vast

majority of humidifiers – does not come with exposed wires or additional information that would

allow for flexible design. Cutting the device from its pre-connected AC adaptor could be done, but

it would be unideal and potentially create a dangerous situation, which is why the manufacturer

strongly discourages the practice. Another drawback of this humidifier is the high power needed

for operation. For these reasons, the APGtek humidifier is not considered for use in this project.

50

 IC Station Ultrasonic Mist Maker - MM
This humidifier is initially appealing due to the small size and low power consumption. Available

on Amazon with standard shipping and handling, this device is easily purchasable and accessible.

This unit comes with its own USB powered driver which does limit some flexibility of design.

Additional testing will need to be conducted in order to modify this unit to be powered directly

from the power rails. If anything, the actual ceramic fog-inducing disks are available in bulk on

Amazon Prime (pack of 5 for $8.98), which could come in handy for additional testing. Further

research into alternative drivers for this device should be conducted to ensure controls

compatibility with the MSP432. Although the choice is less straightforward than the other devices

specified throughout this project, a general lack of low-power humidifier options points the IC

Station Ultrasonic Mist Maker as the basis of design for the SmartLeaf system.

 Power Supply - MM
The greenhouse system is to be powered by standard general-purpose receptacles. In North

America, it is common that multiple general-purpose receptacles share a 120V, 20A, single-phase

branch circuit from a 120/208V panelboard. The most common receptacle type (and the one this

power supply will be plugged into) is the NEMA 5-15R, which is rated for 15A at 125V. Since

multiple general-purpose receptacles are typically on the same circuit, each individual receptacle

on a 20A circuit is limited to 15A (or rather 80% of that amperage, as noted below in Section 5.4

Power Standards) to protect equipment and wiring. Compatible plugs for the NEMA 5-15R are

the NEMA 1-15 and 5-15 power cords, as shown in Figure 13 and Figure 14 below.

51

Figure 13- Receptacle and plug type used by the SmartLeaf system. Permissions requested from

NEMAenclosures.com

Figure 14- Compatible plugs for the NEMA 5-15R; NEMA 1-15 (left), NEMA 5-15 (right).

Permissions requested from NEMA

52

 Power Calculation - MM
With a basic understanding of the mains power constraints, the power supply can now be

considered and accounted for. Power supply circuitry generally consists of a step-down

transformer that lowers the mains input voltage to the needed amount. A full-wave rectifier will

then convert the alternating current (AC) to direct current (DC), and a smoothing capacitor filters

any remaining AC ripple voltage. With the AC to DC conversion fully completed, the correct

output voltage can be provided to any equipment through a voltage regulator. To understand the

input current and voltage the system needs, we need to consider requirements for each of the

components; particularly, the highest voltage needed in the circuitry and the sum of all load

currents. For the initial sizing of this power supply, only the high-power components are

considered, as the combination of low power devices being considered are unlikely to exceed an

amp, and the final calculations are to be upsized for more flexibility in the design.

The calculation shown below in Table 15 provides a rough estimate of the total current draw of

the system. All ratings above indicate the maximum current draw possible for each individual

device; it is unlikely that all systems will require full power for operation. However, room for

growth and additional features need to be considered. To account for all systems within the

greenhouse safely, the power supply will be upsized to 120W at 12V, 10A. Due to the high

amperage and desire to alleviate any risk of leakage current, a NEMA 5-15 plug will be required

for its additional grounding pin. Both external and internal power supplies that meet the above

power demands are widely available on the market, but an internal power supply will better

maintain an orderly appearance for the unit. Integrating the supply into the base of the greenhouse

will not be met without additional challenges, such as a heavier unit and increased heating

concerns. Small tanks for watering and runoff will also be located in the base, and it is crucial to

provide a means of separation and ground fault protection for safety, whether through a specialized

waterproof enclosure or a completely waterproof device. It should be noted that internally

integrating the power supply does alleviate tripping hazards in regard to the cord, which would be

more exposed in an external unit. This will lessen the chance of fall hazards and the potential

toppling of the unit, which could cause extreme injury.

Table 15- Total Power Estimation

Device

Input

Voltage

(VDC)

Input

Current (A)
Quantity

Total

Current (A)

Total

Power (W)

Adafruit 3.5” TFT

320x480 LCD Screen
5 0.15 1 0.15 0.75

Chinly RGBW LEDs

SR5338
5 0.06 120 7.20 36.0

Micro Quiet Brushless

Motor Submersible

Water Pump

12 1.00 2 2.00 24.0

53

Device

Input

Voltage

(VDC)

Input

Current (A)
Quantity

Total

Current (A)

Total

Power (W)

IC Station Ultrasonic

Mist Maker Fogger

20mm

5 0.50 1 0.50 2.50

Pi-Fan Brushless DC

Fan
12 0.25 2 0.50 2.50

MSP-EXP432P401R 3 0.10 1 0.10 0.30

 Total: 9.25 A 52.05 W

 Power Supply Selection - MM
As stated, there are several 120W power supplies available off-the-shelf. Market-ready devices

may bring along undesired limitations when compared to custom designed units, but are extremely

reliable, often available under warranty, and include various safety features that would otherwise

be costly to integrate. Additionally, these units can be shipped, delivered, and tested in a short time

period. Of these options, only waterproof units should be considered. Unfortunately, this

effectively doubles the price in respect to non-waterproof devices of the same power ratings, but

safety is priority. In Table 16 below, a handful of power supplies that meet the 12V/10A/120W

specification and necessary waterproof ratings are compared.

Table 16- Comparison of Waterproof 120W power supplies

Power Supply Warranty Dimensions Cost

Ideally 120W DC 12V Ip67

Waterproof LED Power Supply
2 year

6.61”x 2.67”x

0.78”
$31.99

Yaetek AC 90-250V to DC12V

120W Transformer IP67

Waterproof Electronic LED

Driver Power Supply

N/A 1.6” x 2.8” x 7.5” $16.99

YGS-Tech 12V LED Power

Supply 120W IP67
1 year 6” x 2.71” x 0.6” $39.99

While the second option is most appealing due to the price, it does not have the NEMA 5-15 plug

attached; purchasing and safely soldering the power cord would be additional cost and labor, and

therefore is not ideal. Of the two remaining options, the first has a longer period under warranty

54

and is overall cheaper. The size advantage of the last option is not considerable enough to justify

additional cost; therefore, the Ideally power supply will be used for this project.

 Voltage Regulators - MM
The power supply will effectively transform and step-down the 120VAC to 12VDC to feed the

entire greenhouse system, but voltage regulators will be necessary to provide the appropriate

power rails and added protection needed for individual devices and sensors. In the text below,

different types of voltage regulators will be compared and discussed for their potential use in this

project, primarily linear regulators and switching regulators. Factors such as efficiency, design

flexibility, noise, cost, and complexity for the two regulator types will be discussed and compared

in this section, and the device type used as the basis of design for the power rails in the SmartLeaf

system will be identified.

 Linear Regulators - MM
Linear regulators are extremely cheap and have useful application in devices with very low power

requirements. They effectively maintain a constant DC output voltage regardless of any

fluctuations in the input conditions. While they can provide the correct input conditions and

protection to the circuitry downstream, linear regulators are extremely inefficient due to the

specific nature of their operation. Any difference in input and output voltage is wasted in heat, and

they all require an input voltage higher than the desired output. Larger variances of voltage result

in more heat being exhausted. Typical efficiencies expected of linear regulators are around 40%,

but they can be as inefficient as 14% [30]; so while some money can be saved choosing this type

of voltage regulator, additional expenses of heatsinks and system cooling may need to be

considered. In low-power applications, where the heat loss would not introduce significant

complication, cost savings as well as low complexity and small noise production would likely

justify the use of linear regulators. However, a 120W power supply is hardly a low power

application and would likely result in significant heat loss that would need further mitigation.

 Switching Regulators - MM
A switching regulator is a voltage regulator that employs a switching element in order to transform

the input voltage into a ‘pulsed’ output voltage, which is then smoothed using passive components

such as capacitors and inductors. By rapidly switching a series element on and off, the input energy

is temporarily stored and released as the desired output voltage through the utilization of

synchronous or non-synchronous switches (FETs). Switching regulators are extremely efficient;

no significant power is lost to heat, and a wide range of input voltages can be taken and converted

to the desired output – including voltages lower than the desired output voltage – which allows for

various regulatory configurations. Switching regulators do come with some drawbacks, however.

Inclusion of capacitors and inductors within the circuitry can mean additional bulk from external

components and added electromagnetic interference. In applications where complex circuitry and

additional noise would add unjustifiable complications and cost, linear regulators may be a better

choice. In our case, efficiency, design flexibility, and input range easily justify these negative traits,

as outlined in Figure 15 and Table 17 below.

55

Figure 15- Power savings between low-dropout linear regulators and switching regulators.

Permissions requested from Renesas Electronics

Table 17- Comparing Linear and Switching Regulators

Factor Linear Regulator Switching Regulator

Design Flexibility Buck
Buck, Boost, Buck-

Boost

Efficiency

Low to medium-high for

low Vin -Vout

differential

High

Complexity Low Medium/high

Size
Small/medium, larger at

high power

Smaller at high power

(dependent on

switching frequency)

Cost Low
Medium/high (external

components)

Noise/Electromagnetic

Interference
Low Medium/high

Vin Range
Small (dependent on

power dissipation)
Large

56

 Batteries - MM
The SmartLeaf system will employ three separate microcontrollers to communicate via Bluetooth.

This will allow for two child units in the upper greenhouse enclosure, and a parent controller in

the base of the unit with the rest of the circuitry. Given that the two child MSP430 controllers will

only serve to receive and transmit sensor data, they can be operated in a low power mode the

majority of the time. To streamline design, the two child units will be battery powered. This design

decision may present some challenges in that the user may have to replace batteries over the years,

but for now, this allows us to limit the amount of wires being fed through the unit and aids in

maintaining a neat, organic appearance. The MSP430 requires a supply of 1.8V-3.6V, but likely

will be in LPM3 or 4 for the majority of use. A 3V battery will be supplied for each child MCU,

which will be enough to support them in active mode, and will have a considerable shelf life in its

low power states.

The flowchart showed in Figure 16 below shows the overall scheme for delivering power to each

device within the project. The fans, pumps, LEDs, LCD display, humidifier, and parent MCU will

all be fed from the main voltage rails via switching regulators. The water level sensors, Bluetooth

and WIFI modules will be fed directly from the parent MSP432. The child MCUs, fed from 3V

batteries, will provide power to the various sensors and Bluetooth modules to support parent-child

communication.

57

Figure 16- One-line diagram for the SmartLeaf System

58

 Control Systems - MM
The SmartLeaf indoor greenhouse will largely rely on control systems to maintain a nurturing

environment for plant growth. Four main environmental control systems for supplying water,

airflow, humidity and light will rely on switches, drivers, or controllers in order to turn on and off

and vary the output characteristics of the devices when triggered by the sensors. In this section, we

will be discussing relevant devices that can be used to control the LEDs, pumps, fans, humidifier,

and LCD screen.

 Power MOSFET - MM
Using a power MOSFET is the most straightforward approach to implementing a switch for our

external devices, as the gate can be directly connected to PWM driving pin on the microcontroller.

Typical gate to source voltages (VGS) are around 0.7V, which is small enough to be driven directly

from the MCU. For an N-Channel MOSFET, the positive terminal of the power supply would be

connected to the positive terminal of the device (fan, pump, etc.), the negative terminal of the

power supply would be connected to the source of the MOSFET, and the drain would be connected

to the negative terminal of the device. The microcontroller can be programmed to pull the port

feeding the gate to high to turn the fan on, or low to turn the fan off. Using an infinite loop and

delays within the code, the port can be pulled high and low indefinitely, driving a PWM that can

vary the speed or mechanical work done by the device. Using a Power MOSFET for this design is

not only intuitive, but also convenient as many of the switching regulators considered for use in

this project have an integrated MOS device for this exact purpose. This switch is most likely to be

used in the SmartLeaf system to control fan speed and turn the humidifier on/off. Further research

will be discussed in the sections below to determine the best means of control for the pump circuit.

 Motor Controllers - MM
These controllers are able to drive multiple motors, capable turning them on and off, varying the

speed at which they operate, and even changing the direction of rotation. This could enable the

fans to have more flexibility in how the air is circulated throughout the system, and could

potentially allow the pump to work in either direction. The widely-available L293D Dual H-Bridge

Motor Driver can drive two DC motors bi-directionally, and has built-in heat sinks for thermal

regulation. However, this driver adds little valuable functionality over a standard MOSFET switch

for this project; having the ability to change motor direction is not necessary for basic greenhouse

operation. Additionally, more control lines from the MCU would be needed to operate this driver,

putting further strain on the demand for GPIO pins. For these reasons, a motor controller would

not be ideal for use in the SmartLeaf system.

The following figure shows a diagrammatic plan for how the fans, pumps, and humidifier are to

be controlled using N-Channel MOSFETs and the MSP430. The LEDs used for this project have

an integrated driver that can be directly controlled by the MCU, and the LCD display can also be

directly controlled without more external devices. Additional components such as ripple capacitors

and pull down resistors are not shown in this diagram for simplicity, but these components are

expected to be included within the final design according to the manufacturer’s recommended

design.

59

Figure 17- Control Diagram

Given the demands of this project, the MOSFET chosen will need to have a drain to source voltage

(VDS) of at least 12V in order to ensure the pumps and fans receive enough voltage for operation,

and a low enough threshold voltage to be driven by the MSP432. The Texas Instruments 40V N-

Channel NexFET Power MOSFET will be used as the basis of design for this project, as it can be

used for each device in our 5V-12V input range.

60

 MSP432 Control - AL
A few components within the SmartLeaf system do not need an additional device for its control

and can receive data lines directly from the parent microcontroller. With having the MSP432 as

the central “brain” of the system, we can easily send signals to these N-Channel MOSFETs to

select whether or not power the specific peripheral devices. We plan to set the gate of each gate

channel in the MOSFET to a single GPIO/ PWM pin on the MSP432 and to set the signal high

when we deem that it is time to power each peripheral system. The great thing about this control

system is that we can also modulate the speed that each motor comes up in with the peripherals

connected though PWM pins so that the circuit has a chance to be able to drive those lines without

fear of having too much of an inrush current when a system is suddenly turned high.

For the MOSFETs that would go to devices that would use GPIO pins on the MSP432, we would

the devices that have integrated regulators included them such as the Wi-Fi module and Bluetooth

module as they would provide a cushion for the excessive inrush current. These MOSFETs will

serve more so as a switch to select which device we want to use for the occasion.

 PCB Design Software - DM
When it comes to the design of the PCB for this project, we need to consider many important

things regarding the design. Even though we may have everything carefully planned out on how

we’re going to be putting the project together regarding our selection of sensors, microcontrollers

and Bluetooth or wireless functionality, it would mean nothing at all if we have a poorly designed

PCB layout. It’s one of the most important parts of the project and shouldn’t be taken lightly, the

PCB is what keeps everything together and working as a functioning unit. We need to consider a

multitude of things such as the placement of our components, where to place the traces for power

and ground, component separation, and lastly, we need to know how to deal with the issues of

potential heat damage that can occur on the PCB.

Here are some things that could be considered standard when considering the construction of our

PCB. We need to also make sure that we double check everything regarding the design of this PCB

because it would be a problem if we found a problem much later when we’re building the project

itself and we must send a PCB redesign, and have it manufactured and sent to us a second time.

We would much rather avoid that issue by checking our work thoroughly to avoid this.

There are many CAD software’s that exist for PCB design such as Kicad, Eagle, EasyEDA, PADS,

OrCAD, NI Circuit Design Suite, PCBWeb Designer, ZenitPCB, TinyCAD, Osmond PCB,

BSch3V, ExpressPCB, gEDA, Fritzing and DesignSpark PCB. Our discussions have been gearing

us towards using the Kicad software but our decision on deciding this is determined mainly by

ease of use.

 Kicad and Eagle - DM
We need to accurately compare all this CAD software and decide which one is optimal for us to

be using. We should start by comparing both Kicad and Eagle. Both programs are used for the

same purpose but the main differences between the two are how user friendly they are.

Both Kicad as well as eagle have ample resources on the internet with tutorials on how to use and

navigate their software. There is one major difference between both Eagle and Kicad and it’s that

in Kicad you’re able to view your PCB design in a 3D format. You’ll be able to see an accurate

61

representation of how your PCB layout is going to look before it’ll be sent out for manufacturing.

This is only one of the advantages that Kicad has over Eagle.

Another advantage that our group will be considering before we attempt the design of our PCB is

the cost of the software. What gives Kicad an edge over Eagle in this regard is that Kicad is a

software that anyone can download and install free of charge. Eagle on the other hand has two

versions, a free version as well as a paid version with subscription. The paid version simply has

more features than the free version but nonetheless still lacks a 3D viewer for us to utilize. Cost of

the Eagle subscription is about $15 a month which is costly given the comparison of features

between the free version of Kicad and the paid version of Eagle. This is just comparing the two

programs being just Kicad and Eagle.

 EasyEDA - DM
We need to start discussing the other software’s as well. Ideally, we should speak about EasyEDA

next. This program from what we’ve seen is a very professional program for PCB design with

many free libraries for us to use. Though EasyEDA may have everything that we may require there

is also a paid version that isn’t too expensive for us to use. EasyEDA comes in multiple types of

subscriptions, there’s a free version, a $5 subscription version and a $10 subscription version, each

with their own benefits obviously the highest costing having the same benefits as the previous

tiers. Though there is a downside to using EasyEDA and that is that this PCB design software is

web based, and not something that is downloadable to your computer. The fact that this is sort of

thing exists whereas it is a web-based software shows that it is not very secure. Regardless of what

is said on the website about security there’s always a chance that the information that we have set

for our PCB design could be leaked and we want to avoid that as much as possible, though the

odds of something like this happening is extremely low.

Also, being web based, there’s also the chance of the website being shut down for maintenance

purposes and if we’re in a situation where we need to make certain revisions to our design and we

see that the website is shut down temporarily we be in a bad spot and the project itself will be at a

standstill. Though they do have some other upsides that they mention on their features section such

as them allowing full team collaboration on the web-based PCB design software as well as support

via email, however the email support that they provide is divided into the tiers. The free version

of EasyEDA only offers their email support for only 12 hours whereas the paid versions of their

software offer support for 24 hours. This makes a huge difference because if we need to make an

emergency contact to their support and they’re unavailable it would not be good for us or our

project. Other features that they showcase are mundane things such as lack of advertisements, a

customizable logo, and local/cloud hosting. Those are the features for EasyEDA but there are other

PCB design software’s to speak about and one of those is known is PADS.

 PADS - DM
PADS is a very useful PCB design software with their own benefits as well as their setbacks.

PADS has a ludicrous amount of features but their business model and how they go about

distributing the software holds it back. PADS have an insane price point of around nine thousand

dollars and that’s what they consider to be their special pricing for it, so based off this, we can

infer that this is for a limited time sale. Though that price point is for their professional version of

62

their software which has nearly everything a person wanting to do PCB design would need. They

do offer a standard version called PADS standard which includes features such as schematic

design, constraint management, PCB layout, options for creating your own libraries, 3D viewing

of the PCB layout models, archive managements as well as quick-start guides, design references

and already available libraries for beginners.

Comparing this software to EasyEDA from earlier, this one is a downloadable software that would

be installed to the user’s computer and can be accessed offline without the need for internet access.

They do a one-time payment model so once you purchase the software, it’s usable for as long as

you need it. What differentiates the PADS professional from the PADS standard version are the

features included. PADS professional offers everything that the standard edition offers plus a few

more extra features that a PCB designer would find useful for their projects. Features that are

offered with the professional version include design entries, quick-start guides with lessons on

how to tackle and approach the use of this software, signal integrity for post-layout and pre-layout,

analysis of thermals, simulations for analog, 3D PCB layout as well as a native 2D option if the

user prefers, and sketch routing.

As we can see from the features of the professional version, the main difference between the

standard and professional would be the addition of included simulations and sketch routing as well.

Sketch routing is a very useful tool to have with this PCB design software’s since this option allows

the designer to auto-route traces on the PCB design except for focusing on optimizing the routing

to make the best possible connections. This allows for minimal errors with routing and saves the

designer a lot of time and effort trying to figure them out for themselves. The addition of the feature

of simulations also allows the designer to pre-test what they’re about to place in their design before

even making the addition to the PCB. These are only the features that the PADS software provides,

they have a lot of positives to their software, but their price point holds them back from our

decision to use their software.

 OrCAD - DM
Another PCB design software for discussion is OrCAD. This software has many features that

someone looking into PCB design would want. Features that are included in OrCAD are schematic

designs, simulations of parts to see whether they would be useful in your PCB design, options for

simulations with MATLAB Simulink, PCB design software, the ability to perform an analysis on

signal integrity and finally the ability to perform ERC checks. ERC checks or Electrical Rule

Checks check for any irregularities in the PCB design which can be viewed as very critical and

drastic errors that need to be taken care of when found. If there are errors such as these our design

could simply malfunction and not work properly due to these very critical errors. This is a very

nice feature to have from OrCAD. OrCAD offers a free trial to anyone wanting to use their

software. Though this trial needs to be made upon request which is available on their website.

Other features that OrCAD has are an interactive 3D viewer for the PCB design to check for any

irregularities as well as a DFM that can be used as well. DFM is a term for Design for

Manufacturability. This will allow us to check in the final steps of our PCB design for any errors

that may be critical when it comes to final assembly of the PCB. This is a very versatile and useful

feature that we as a group need to take into consideration when making our decision on what

software we’re going to be using.

63

Unfortunately, there’s one major downside to this software and that is that we do not know how

much this software costs. The main website for OrCAD requires the consumer to contact a sales

representative for a quote on licensing and how to purchase the product. This really inconveniences

us in terms of getting our hands on this product because we simply do not know how much this

product costs. They claim that there’s a student version as well but that also requires us to contact

one of OrCAD’s representatives for a quote on pricing. Another negative downside to this is that

they mention that the student version of OrCAD is limited in terms of features. The features that

are limited are unfortunately not mentioned on their website. Though seeing what OrCAD offers

in terms of features and functionality makes it a nice candidate for selection for us on deciding

which PCB design software we’re ultimately going to select and use.

 NI Circuit Design Suite - DM
NI Circuit Design Suite is another prime candidate for a PCB design software that we may be

using as well. This software for us engineering students is somewhat familiar to us because in our

courses we used some of National Instruments’ software that being their Multisim software. Us as

students in a laboratory environment are well versed in using this software in multiple courses in

engineering. They offer an upgraded version of their Multisim software that can be used for PCB

design as well. It’s called Multisim for Designers which offer many features such as simulation in

SPICE, multiple tools for analysis and many PCB design tools that would be more than enough

for us to use for our greenhouse project PCB design. Though there is a setback to using this

software as well, since if we were to get this Multisim software, we’ll also need to get National

Instruments other software called Ultiboard which allows us to port the schematic onto the PCB

design software.

There are PCB design tools available on the Multisim for Designers software but to make our

layout we’ll need two software’s in total not just one. Pricing for both software’s vary but they’re

not on the cheap end whatsoever. For the National Instruments Ultiboard software as well as the

Multisim for Designers operate on a service plan going by yearly subscriptions. These software’s

require recurring payments after a certain amount of time to continue their use which is not ideal

for our purposes. They offer for both software three different editions. They offer Educational,

Professional and Full. On their website they’re very unclear on what features are missing and what

features are included in each edition. For our purposes on selecting our PCB design software, the

pricing of the software for National Instruments as well as the fact that we need to make two

separate purchases will more than likely deter us from using their PCB design software.

Table 18- Comparing PCB design software

PCB

Software
Supported Operating System Pricing Features

KiCAD Windows/Mac/Ubuntu/Debian/Linux Freeware

Schematic creator,

PCB designer, 3D

PCB viewer

Eagle Windows/Mac/Linux Subscription
Schematic Creator,

PCB designer

64

PCB

Software
Supported Operating System Pricing Features

EasyEDA Windows/Mac/Linux Free/Subscription
Schematic creator,

PCB designer

PADS Windows Subscription

Schematic creator,

PCB designer, 3D

viewer

OrCAD Windows
One-time

payment

Schematic creator,

PCB designer, 3D

viewer, Error Testing

NI Design

Suite
Windows

One-time

payment

Schematic creator,

PCB designer

 Board Environment - DM
After we have created our PCBs using our chosen software, we’ll need to have it manufactured

and sent to us in order to use it. There are multiple manufacturing companies that can take care of

the manufacturing process of our PCBs and send it to us in a timely manner. Also, a couple

companies that not just manufacture the PCB but also can have it shipped to you with all the

components attached to it as well, so we don’t need to waste time with soldering. Though these

are simply the positives. Negatives that some board manufacturers might have would be an

extremely slow shipping time. There are some board manufacturers that can take up to a month

maybe even longer before you’ll be able to receive your circuit board. All components are going

to already be attached to the PCB and all that’ll needs to be done is attaching our PCB to the

peripherals that we have such as the fan, humidifier, water pump, LEDs, water sensors etc. And

mount it to our enclosure and start running our completed project. Now, each board environment

has different positives and negatives to them but the main ones we’re going to be discussing are

JLCPCB, 4PCB and Sunstone.

 JLCPCB - DM
This company for custom made circuit boards is well known and one of the more popular

manufacturing companies for custom made PCBs. This is largely since the time for manufacturing

doesn’t take an extensive period. On the main website for JLCPCB they claim to manufacture, and

ship custom made PCBs to the consumer in a short time span of a maximum of two weeks.

Comparing to some of the other manufacturers that offer manufacturing for custom made PCBs,

the time it takes them is very commendable and good for people that are under a very short time

constraint and really need to get their hands on their circuit board as soon as possible. Another

downside to choosing JLCPCB is that their prices are expensive when comparing to their

competitors. These prices are considered expensive because if you want your board to be

prioritized and shipped as quickly as possible, you need to pay a premium price for that to happen,

but they offer their quick shipping as a selling point to entice the consumer to purchase from them.

65

 4PCB - DM
This board is going to more than likely be our main choice since their prices can be considered fair

and they run multiple quality checks on the PCBs before being sent out to the consumer. Their

main site mentions that they have they best PCB shipping record within the PCB manufacturing

industry. They also offer technical support 24/7 whenever we need to get in touch with a customer

service representative. There is no specific requirement to order a minimum number of PCBs from

them in order to make a purchase. If anyone also wanted to check their own PCB design, they have

their own special software that we can use to check whether our PCB will function as we intend it

to based off our design.

 Sunstone - DM
Sunstone is a board manufacturer that, like 4PCB claims to be the leader in board manufacturing.

Though the first negative I saw when navigating their website is that you cannot order a single

PCB for them to manufacture. You need to purchase a minimum amount and that would be in pairs

of two. Though this can be seen as both a positive and a negative simply due to the fact that if

something went wrong with the board on the first attempt of our assembly of the components such

as the accidental burning of a solder pad on the circuit board essentially ruining the circuit board

itself, we would have an extra board laying around to try our hand at assembling it again. This

would be very useful for us, but the fact is that Sunstone simply does not have the option to

purchase a single board from them.

Board

Environment
Affordability

Minimum Purchase

Requirement
Shipping Time

JLCPCB Premium No 2 weeks

4PCB Fair No 3 weeks

SunStone Premium Yes 3 weeks

6.0 Vendors - MM
In this section, the manufacturers and distributors of components purchased for the SmartLeaf

system will be listed and discussed. Factors such as convenience, price, shipping speed, design

support, and device documentation will be considered for each vendor as a means of justifying

their inclusion. Additional considerations for customer service, warranties, and design tools will

also be noted.

 Texas Instruments – DM/MM
Many of the development boards for testing and initial experimenting on were from TI. Since they

have so many tutorials, such a wide range of backpacks to have added on to the development

boards for our purposes, and not to mention all the software user guides to go with it, we decided

66

that TI would be the best companies to have a centralized hardware and software standpoint more

the microcontrollers.

(MM)Aside from microcontrollers, Texas Instruments has a wide selection of switching

regulators, power MOSFETs, and miscellaneous passive components with detailed, in-depth

documentation. Their engineer-to-engineer (E2E) program gives us access to assistance from

applications engineers with device-specific expertise. Tools created for design assistance are also

available through TI, including the Webench Power Architect, a powerful program that outlines

devices capable of meeting the power demands in a certain project. While TI typically requires

large, bulk purchases of circuit components, it is possible to request device samples to be sent,

which will not only relieve strain on the project’s budget, but also allow for device testing prior to

the ordering of the printed circuit boards. Overall, Texas Instruments is not only a reliable supplier

of quality semiconductors, but also a great resource for information and project support.

 Adafruit - MM
Adafruit Industries is an opensource hardware company that sells a wide range of sensors,

microprocessors, drivers, and several other devices applicable for the SmartLeaf system. In

addition to their store, they provide a multitude of tutorials and present technical information in a

clear, concise manner that can simplify and streamline the design process. Adafruit also publishes

a significant amount of documentation for their products, which further simplifies project planning

and reduces the amount of time needed to get a controlled-component functioning. Reviews for

customer support are widely positive, shipping costs are reasonable, and overall, Adafruit is a great

resource for technical information.

 Smart Prototyping - MM
This website is a distributor based in China that sells various sorts of electronics for multiple

purposes. The SmartLeaf greenhouse system will be using their Soil Moisture sensor as well as

utilizing their datasheet for reference. While shipping from China comes with additional wait time

and cost for transportation, a limited number of distributors provide the exact sensor type

compatible for this project; although not the most ideal, limited options and lack of device

documentation from other distributors make Smart Prototyping the best choice for sourcing this

device.

 Mouser - JG
A variety of electronic components are available on Mouser.com. From resisters and capacitors up

to ARM MCUs, Mouser has it all. Shipping costs vary, but usually 2-day shipping UPS costs the

same as 5-day shipping FedEx. There are also a bunch of coupons available to make purchasing

parts cheaper. When it comes to designing our PCB, part lists can be exported into Mouser and

with the help of their new BOM tool, we can find all the components we need without having to

do tedious searches. Additionally, datasheets for nearly every component are easily available off

the search engine, and large spreadsheets of device options can be imported directly into Microsoft

Excel for further evaluation and comparisons.

67

 Amazon - MM
Perhaps the most recognizable household name of the vendors listed, Amazon is a great source of

cheap, fast-shipping equipment. While the general lack of technical device documentation makes

this distributor less-than-ideal for the more complex components needed in this project, the vast

selection and range of equipment applicable to the project cannot go unnoted. With Amazon Prime

available to the team, free 2-day shipping can be taken advantage of for the simpler components

needed in the unit. Additionally, their customer support team is fairly responsive in addressing

broken or defective equipment upon delivery. The website even offers additional warranties

directly through Amazon or the third-party retailers. Overall, what this distributor lacks in

documentation and useful information is made up for by cheap prices, fast shipping, and adequate

customer support.

7.0 Standards - MM
This section outlines the various standards and regulatory authorities that govern design principals

relevant to this project. Standards for the environment, communication, software, power, printed

circuited boards, and safety will be discussed and detailed for their relevancy in this project.

 Greenhouse Environment Standards - DM
For us to build a project such as a smart tabletop greenhouse, we would need to discuss the

standards that come with it as well. These are general standards that allows for the regulation of

chemicals which are a cause of greenhouse environments. These standards are mainly for

companies that need to accurately report all emissions that occur due to their business [31]. This

is all a standard that should be followed to monitor greenhouse gas emissions carefully. These

greenhouse standards are in place such that also if a company wants to construct a greenhouse,

they would need to go through the effort of getting paperwork filed to get a permit to do so. There

are also careful measures that must be taken in the construction of these large greenhouses, so it

makes sense that they need to be regulated in this manner. This also is applicable to government

agencies as well as universities. Seeing as how this project that we’re working on is a university

level project, it’s under the assumption that this project also applies to us as well even though

we’re on a much smaller and negligible scale compared to other companies and government

agencies.

 Software Standards - JG
IEEE 12207 defines the lifecycle standard for software systems. The first process is defined as the

primary group, which includes acquisition, supply, development, operation, and maintenance.

These are the basic needs of software development. The next group includes the supporting

processes of documentation, configuration management, quality assurance, verification,

validation, joint review, audit, and problem resolution. Organizational aspects include

management, infrastructure, improvement, and training.

68

 Communication Standards - JG
Communication standards are essential to make sure the systems in our device can communicate

properly. Standards for communication include WiFi and Bluetooth, and MQTT

 WIFI Standards - JG
The IEEE 802.11 standards for WIFI (Wireless Fidelity) describe the different flavors of wireless

communication based on a set of criteria. Each network type has a specific policy determined by

the speed of the network measured in bits per second (bps) and the frequency the network is carried

on in Gigahertz.

Table 19- Common WIFI Standards

Network
WIFI

Standard
Speed Frequency Note

802.11a WIFI 2

Max 54Mbs,

commonly 6 to 24

Mbps

5 GHz

Not compatible with b or g

networks. Old standard that is still

in use by many devices.

802.11b WIFI 1 11 Mbps 2.4 GHz
Made backwards compatible by g

networks

802.11g WIFI 3 54 Mbps 2.4 GHz
Most popular and easily backwards

compatible with existing systems

802.11n WIFI 4

100 Mbps, up to

600 Mbps under

perfect conditions

2.4 and

2.5 GHz

Fastest network. Uses multiple

frequencies at once to create a very

fast network

Combinations of network numbers exist such as 802.11abg, meaning that each of those types are

supported by the router. Modern day routers support almost every type of network to ensure they’re

up to date with the latest standards but also backwards compatible.

The newest standard, WIFI 6 (802.11ax) releasing soon, promises to offer frequencies in the 2.4

and 5 GHz range, as well as offering backwards compatibility. Future improvements are to include

support for 1 GHz and 7 GHz frequencies. This network also supports improved security measures

with advanced encryption and authorization systems, keeping a user’s data safe while maintaining

an easy way to connect to the network.

 Bluetooth Standards - JG
Bluetooth is a wireless communication protocol standardized by IEEE 802.15. There have been

many iterations of Bluetooth versions over the years, but the newest technologies use Bluetooth

4.2 or have recently adopted Bluetooth 5.0.

69

Table 20- Modern Bluetooth Standards

Version Speed Bandwidth Frequency Notes

Bluetooth 4.1 24 MBps 100 meters / 300 ft
2.4 to 2.485

GHz
Backwards compatible

Bluetooth 4.2 24 MBps 100 meters / 300 ft
2.4 to 2.485

GHz

Low power and

security upgrades

Bluetooth 5.0 48MBps
300 meters / 985

feet

2.4 to 2.485

GHz

No backwards

compatibility, requires

new hardware.

Experimenting with Bluetooth 5.0 would be a nice addition to our project. This newly released

version packs an advanced privacy and security protocol, consumes less power, and has faster and

farther connection capabilities.

Utilizing the existing Bluetooth 4.2 wouldn’t be a bad idea either. There are currently more devices

that support Bluetooth 4.2 than 5.0, and 4.2 is backward compatible with previous versions. For

our benefit as a group designing our system utilizing Bluetooth, more projects have been

documented for us to research and learn from with Bluetooth 4.2.

 MQTT Standards - JG
MQTT version 5 standards were set by Oasis and updated in March 2019. The MQTT protocol

operates by exchanging a series of control packets. These control packets are split up into three

parts, in the order of a fixed header, variable header, and a payload. Control packets may contain

as little as two bytes of data, or as much as 256 MB. MQTT also relies on a TCP protocol for data

transmission. The MQTT packet header is shown in the following table.

Table 21: MQTT packet header

Bit 7 6 5 4 3 2 1 0

Byte 1 MQTT control packet type Flags specific to each MQTT control packet

Byte 2 Remaining length

Bits 4-7 of byte one in the MQTT are represented as a hexadecimal integer. The remaining bits 0-

3 of byte 1 in the Fixed Header contain flags specific to each MQTT Control Packet type. The

control packet types will be important to note for debugging MQTT issues. The following table

describes the standard of control packet types for MQTT.

70

Table 22- MQTT Control Packet types

Name Value Direction of Flow Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server (C2S) Connection request

CONNACK 2 Server to Client (S2C) Connect acknowledgement

PUBLISH 3 C2S or S2C Publish message

PUBACK 4 C2S or S2C Publish acknowledgement

PUBREC 5 C2S or S2C Publish received

PUBREL 6 C2S or S2C Publish release

PUBCOMP 7 C2S or S2C Publish Complete

SUBSCRIBE 8 C2S Subscribe request

SUBACK 9 S2C Subscribe acknowledgement

UNSUBSCRIBE 10 C2S Unsubscribe request

UNSUBACK 11 S2C Unsubscribe acknowledgement

PINGREQ 12 C2S PING request

PINGRESP 13 S2C PING response

DISCONNECT 14 C2S or S2C Disconnect notification

AUTH 15 C2S or S2C Authentication exchange

 Power Standards - MM
The greenhouse unit will be reliant on standard 120V/60Hz general-purpose receptacles in

residential and/or commercial settings. The power standards for general-purpose receptacles in

North America are set by the National Fire Protection Association (NFPA), which publishes the

National Electrical Code (NEC). For larger buildings and structures, the American Society of

Heating, Refrigerating and Air-Conditioning (ASHRAE) provides additional Energy Standards for

efficient design practices.

 NFPA 70 National Electrical Code - MM
Article 210.9 of the NEC specifies the minimum ampacity and size for conductors, which will

provide a guideline for the maximum allowable power/load for the greenhouse system. Avoiding

excessive current draw will prevent excessive voltage drop in the branch circuits, which causes

inefficient operation of electrical equipment and potentially reduce the reliability of motors,

heaters, lighting, etc. For non-continuous loads, branch circuit conductors should be designed to

have an ampacity not less than the maximum load served. In layman’s terms, a device on a circuit

cannot pull more current than its breaker rating. If the branch circuit typically supplies power to a

71

device for more than 3 hours, it is considered a continuous load. For continuous loads or any

combination of continuous and non-continuous loads, the minimum branch-circuit rating is to have

an allowable ampacity not less than the non-continuous load plus 125% of the continuous load.

For example, if a continuous load device is plugged into a dedicated receptacle on a 120V, 20A,

single phase circuit, it should not draw more than 80% of the maximum 20A. The maximum

allowable load on this circuit is 16A or 1.92 kW.

 ASHRAE Standard 90.1 - MM
This standard provides minimum requirements for energy efficient designs for commercial

buildings or high-rise residential spaces. This code would be especially relevant if the greenhouse

were to be installed in an office or school environment, as there are more stringent energy

requirements for these types of spaces. Section 8.4.2 describes automatic receptacle control, which

is a process of switching off certain receptacles in areas that are not currently occupied;

specifically, this standard requires that 50% of all 15 and 20A receptacles in private offices,

conference rooms, printing/copy rooms, break rooms, classrooms and workstations are to be

automatically controlled via occupancy sensors or timers. In the case that certain equipment

connected to a receptacle in one of these areas requires 24-hour power, the circuit should not be

controlled, and it is acceptable to exclude this receptacle from the 50% requirement calculations.

Section 8.4.2 is noted as a standard in this paper because electrical designers for these spaces need

to know what type of equipment is to be installed to provide the correct control requirements; it

should be noted that the greenhouse system requires 24-hour power and should not be placed on a

controlled circuit.

 PCB Standards – DM

 Component Placement - DM
We need to consider multiple things when placing our components on the PCB, such as the

orientation, placement and the organization of our components that we’ll be placing on the PCB.

We also really need to consider how we’re going to approach soldering our components onto the

PCB. We need to make sure the components that we will be placing are in the optimal orientation

for us to not have any issues regarding soldering. Orientation is not the only thing we need to

consider when it comes to soldering, if components are placed too close together, there can be

issues when it comes time to place components on the PCB which can make the act of soldering

unnecessarily difficult.

To remedy this, we need to make sure that when we place our components, everything will be

properly spaced out so that we can avoid all of this. When placement is concerned, we need to

attempt to have no issues with components that could be considered through-hole, so we must have

the components be placed in an area on the side of the board that we will not have any soldering

for those specific components. Organization of our components is also something that is

paramount for us to have a simpler time with the actual assembly of the PCB itself. We need to

have all our surface mount components be arranged on the same side of our PCB to simplify our

assembly and to not cause any major confusion or issues. Below are examples of poor designs as

72

well as examples of good designs for the PCB layouts considering all these discussed topics of

orientation, placement and organization.

 Traces - DM
We need to carefully consider how we’re also going to be placing our traces for our components

in general. We need to carefully figure out how the traces for our power, signal and ground are

going to be laid out on the PCB design. We need to investigate the rails for the supply and consider

the width that we’ll have for our traces themselves. With regards to the power and ground, we need

to make sure those centered in our board as well as symmetrical. This is necessary for us to do

because we need to give all our components enough room on the PCB itself. Signal traces are

important to PCB design, and we need to make sure that the traces that we have on our schematic

is accurate to the traces and connections that we’re going to have on the PCB design itself or we’ll

be running into issues with the PCB not functioning properly. Finally, we need to account for the

widths of our traces which would be holding the currents that will be flowing to all the components

in our PCB design.

We need to account for the widths of these traces because of trace resistance. Trace resistance is

very important to consider because if there is an issue that can occur with our PCB it may not have

anything to do with the component placement or orientation at all. Current flow will be limited

between components due to the traces themselves even if the schematic is perfectly laid out on a

PCB board, and this can be due to traces not being the correct width. For us to know what width

we need to use in our traces we need to calculate trace resistance. There is a common formula that

we can use to calculate this and that is R = P x A [32]. R standing for resistance, P standing for

resistivity of any material, and A standing for the area [32].

 Separation of Components and Mitigating Heat Issues - DM
Another thing we need to take a close look at would be the attempt to mitigate issues regarding

how close we’ll be having the power and ground in our PCB design. We need to make sure we

have adequate separation of these two to avoid any major conflicting issues such as the PCB not

functioning properly [33]. All of this is just for mitigating issues that may arise with spikes in

current as well as voltage. When it comes to taking control of issues regarding heat with our PCB,

we need to look at things outside of the PCB design first to minimize the potential of this problem

occurring in the first place. We need to make sure all the components that we select have had their

datasheets carefully analyzed to make sure that their temperatures are within the specification of

our design. Also, as an added measure of caution it would be wise also for us to also add an addition

to the PCB board itself to minimize the heat and temperature spikes that may occur. This would

be a “thermal relief”, which would reduce the risk of thermal issues occurring in our design. Below

is an example of a pattern of a thermal relief that could be expected in our PCB design. Though

having a thermal relief can be an optional step because if our design was made properly and we

have taken all the precaution measures to ensure that we will not be overheating do to an

overwhelming increase in current flow, we should be in a good space when it comes to heat

management.

Even though thermal relief is an option for us to manage heat, there are other avenues for regulating

heat in our PCB. Heat regulation can come in the form of just simply purchasing a thicker board.

Though purchasing a thicker board isn’t the only thing that should be done to regulate the heat

73

flowing through the traces in the PCB. Another thing that needs to be done on top of this is also

placing the traces in the center of the PCB [34]. Placing the traces in the center would allow for

the heat flowing to dissipate in a much wider area instead of being constrained to a smaller portion

of the board potentially burning the traces or other components on the PCB itself. Also, in addition

to doing all of this to manage heat, we’ll also incorporate thermal interface materials or TIM to

manage it.

Adding thermal interface materials along with having a thicker PCB with properly placed traces

will be very beneficial for us to avoid the potential worry of accidentally burning out the traces on

the PCB. Another thing that would need to be monitored in terms of our PCB would be the

surrounding heat as well as the heat being transferred into the PCB via current flow because if we

simply consider the heat being flown into the PCB and neglect other sources of heat that could be

detrimental to the project, then the PCB might burn out in that manner. We’ll also be considering

the extremes when it comes to surrounding temperature so that shouldn’t be too much of a cause

for concern.

 Design Standards - AL
Making sure that your design abides to exiting standards is imperative to designing and creating a

new product. Implementing these standards correctly ensures that the new product will be

compatible to existing technologies and protocols that are currently in use, thus ensuring that the

functionalities of the product will work, especially if the product is to interact with external

technologies. These standards require us as engineers to take the proper steps to ensure that the

product that we are making has a positive impact on the user.

The main standards for designing a project takes place in many forms and has many constraints

but can be broken down to nine main branches; economics, environmental, sustainability,

manufacturability, ethical, health and safety, social, and political. To expand more on these

subjects, we will briefly provide the importance of abiding to each of these branches while in the

process of designing a project.

1. Economics: Abiding to the budget should be one of the main constraints of a project. Having

the team overspend and not distribute funds correctly destroys the cost effectiveness of the

design. In order to reduce the budget, the team’s spending mainly consisted of the mindset of

out-of-the-pocket expenses as we couldn’t find a sponsor for our project. Our team’s mentality

was to provide the highest of quality of product we could create while minimizing the effect

of the project on our wallets! To do this, there were many improvements and adjustments of

the components that we had in store for the final project to reduce the cost of parts when finding

of an equivalent component, choosing test equipment that could double up and have multiple

uses, i.e. the MSP432 Launchpad Evaluation kit that could double as testing our the capabilities

of an ARM processor that could handle more data and as well as being able to test out the

capabilities of the LCD screen, Bluetooth module, and internet capabilities.

2. Environmental: With environmental constraints, we were positive that we wouldn’t break any

current laws or standards that have to do with polluting or corrupting the environment. If

anything, our product would optimally reduce waste, growing plants to their maximum

74

potential, and consume minimal power to reduce the negative footprint this leaves on the

environment.

3. Sustainability: With the Smart Tabletop Greenhouse, we had the project designed with

sustainability in mind. We limited the complexity or our assembly and minimized the chances

of having a discontinued component by choosing more popular parts. To come with the Smart

Tabletop Greenhouse we created an instruction manual for the system so that plants within the

environment could be switched out once they were grown to their highest yield or if the user

wants to insert another plant within the environment. If the need to replace a component of the

Smart Tabletop Greenhouse were to ever occur, we also were sure to create an easy to

understand user manual to instruct anyone on how exactly each component of our assembly

fits in to the system.

4. Manufacturability: For the easy of manufacturability, most of the system was made in a lab

setting. The degree of complexity of our system will be explained within the User Guide and

have an easy-to-understand step-by-step instructions on how to assembly our design so that

others could easily replicate and optimize our system currently.

5. Ethical: The ethical values we were to use for our design were more or less the ones that are

used at the University of Central Florida and other nationally recognized educational institution

during classwork. We were sure to not have any portion of our design plagiarized from an

outside source and made sure to cite the sources that we used to optimize our design. The hopes

we had for our project was for the plants growing within the system to be legal, and not to have

any illicit and illegal vegetation to be used for the system for any unethical purposed. This

design will be handed off to individuals who are trustworthy and are in good standing with the

government as to prevent any possibility for this to happen.

6. Health and Safety: The properties that are to be used in this portion of ethicality are to be

referred to the health and safety of the individuals creating and using this environment. Since

we are dealing with electrical devices and liquids within close proximity of each other in our

system, we had to ensure that none of the sensitive equipment was exposed to any of the water

to provide nourishments for the plants and ensured that the water running off of the plants after

they have been nourished are well away from the electrical components. When constructing

the Smart Tabletop Greenhouse, one should refer to the User Manual as to make sure that each

component is properly installed. If any component within the system is installed incorrectly,

there is a chance for the plants within the system to not be optimally grown or in the worst

case, the system would not operate at all.

7. Social: Social ethical values encompass creating a design that was feasible enough to provide

us, the creators, a challenging project, but not so much that we would have to spend more than

a few hours per day to work on the Smart Tabletop Greenhouse. As students we have to

consider scheduling our other education responsibilities outside of this project. Many of us

have at least one other class to work on besides senior design so we have to time manage our

given tasks in the group to be able to accommodate for these responsibilities. On top of our

education responsibilities, many of us have jobs and internships to take into account of, so we

had the task to optimally design our project all the while of juggling our schedules.

75

8. Political: For political obscurities that could occur in the talk of ethics, the only concerns that

we have is if the user were to grow illegal vegetation within the system. This system is intended

to be strictly a tool that abides that laws that we have in the United States. Other than that,

should have no problems in being used as a usually educational tool as well as a design that

lawful hobbyist can try in the future.

8.0 Safety Standards - MM
There are several consumer electronics certifications and standards that need to be met in order to

sell a product on the US and North American market. Additional standards are to be considered

for workplace safety and ground fault protection in the presence of water systems.

 FCC Requirements - MM
The Federal Communications Commission (FCC) primarily enforces two major sets of

requirements in regard to consumer electronics: Electromagnetic Compatibility (EMC) testing and

Radio Frequency (RF) testing [35]. The former involves the product undergoing a series of tests

to ensure that the electromagnetic fields emitted by the device do not exceed limits that could

endanger life or introduce significant electrical interference to an environment. RF testing is

similar in that it involves measuring the impact of electromagnetic fields emitted, but it takes a

deeper look into the fields within the RF spectrum. Fields within this spectrum are typically emitted

by Bluetooth and WiFi modules within a device. The FCC will determine if the transmitted

frequencies are appropriate for a device’s use on the market.

 Miscellaneous Safety Testing - MM
There are often instances where safety concerns are present for certain aspects or intended uses of

a product, but no widely available standardized test exists to quantify the specific risk involved.

Products that fall into this category should be sent to specialized safety testing labs, such as UL,

Intertek, SGS, or Met Labs to get expert guidance and gain clarity on legal issues [35].

 NRTL Program - MM
The Nationally Recognized Test Lab (NRTL) program was implemented by the Occupational

Health and Safety Administration (OSHA) as an authority over the environments in which

government and private employers conduct work. This program would be fundamental if a product

is to be marketed to office environments; however, it does not regulate devices for consumer use.

 IP Code - MM
The International Protection (IP) Marking code is defined in the International Electrotechnical

Commission (IEC) standard 60529. This code classifies and compares the amount of protection

provided by mechanical casings and electrical enclosures against intrusion, dust, accidental

contact, and water [36]. This marking is often associated as a waterproof identifier for a consumer

electronics (typically mobile devices), however users should be aware that not all IP ratings

76

describe resistance to water submersion. Following the ‘IP’ marking are two mandatory digits; the

first of which indicates solid particle protection, the other displaying the mechanical impact

resistance. Table 23 displays the Ingress Protection ratings of electronic enclosures.

Table 23- Ingress Protection Ratings Guide

Solids Water

1
Protection against a solid object greater

than 50 mm.
1

Protected against vertically falling drops

of water. Limited ingress permitted.

2
Protection against a solid object greater

than 12.5 mm.
2

Protected against vertically falling drops

of water with enclosure tilted up to 15

degrees from vertical. Limited ingress

permitted for 3 minutes.

3
Protection against a solid object greater

than 2.5 mm.
3

Protected against sprays of water up to

60 degrees from the vertical. Limited

ingress permitted for three minutes.

4
Protection against a solid object greater

than 1 mm.
4

Protected against water splashed from

all directions. Limited ingress permitted.

5

Dust protected. Limited ingress of dust

permitted. Will not interfere with

operation of the equipment, 2-8 hours.

5
Protected against jets of water. Limited

ingress permitted.

6
Dust Tight. No ingress of dust, 2-8

hours.
6

Water from heavy seas or water

projected in powerful jets shall not enter

the enclosure in harmful quantities.

Rating Example:

7

Protected against the effects of

immersion in water between 15 cm and

1 m for 30 minutes.

8

Protected against the effects of

immersion in water under pressure for

long periods.

IP 6 7

77

 UL 8750 LED standard
The UL 8750 standard requirements are important for engineering safe luminaire or other kinds of

lighting that operate between 400 to 700 nanometers. This scope encompasses the broad spectrum

of visible light, thus LEDs fall under these standards as well. Our smart garden may include LEDs

for growing purposes, or just for visual appeal. Either way, these are important standards that apply

to our project.

 Sensor Standards - MM
The Institute for Electrical and Electronics Engineers (IEEE) has published a set of standards for

sensor performance in IEEE Std 2700. This document provides a basis for sensor terminology and

units, as well as limits and conditions of operation for common devices such as the accelerometer,

magnetometer, gyrometer/gyroscope, barometer/pressure sensors, hygrometer/humidity sensors,

temperature sensors, ambient light sensors, and proximity sensors [37]. For the purposes and scope

of this project, standards concerning temperature and humidity sensors will be discussed in this

section.

 IEEE Standard for Sensor Performance - MM
Specifications for digital humidity sensor standards are outlined in this document, detailing the

various testing that should be conducted prior to market release in order to determine the

effectiveness of the meter in question. For a digital humidity sensor to be considered sound, a full-

scale range, or a peak-to-peak measurement range of the sensor, needs to be defined. Testing to

determine the measurable range is in-depth, encompassing tests for each selectable mode, after

mechanical shock, and throughout the expected lifespan of the device. Digital humidity sensors

are to measure air moisture content in units of %RH (percent relative humidity). Relative humidity

measurement accuracy over the entire measurement range is to be plotted and compared to the

expected plot for its ideal values. Additional testing and data is to be presented by the sensor

manufacturer for its digital bit depth, sensitivity, noise, current consumption, integral non-

linearity, response time, and stability.

This standard also outlines the testing and data needed to validate the functionality of temperature

sensors. A key concept noted throughout this paper is ambient temperature versus the device

temperature, and the importance device efficiency and insulation to prevent heat of the circuitry

impacting the sensor reading. All testing discussed above for the humidity sensor is conducted for

the temperature sensor. IEEE notes that the standard unit for temperature is the metric unit in

Celsius, which allows for widespread and international applications.

78

9.0 Project Design - AL
This section will serve as a general outline in how we decided to implement all of our gathered

research into a coherent design to present as our product.

Figure 18: Block Diagram of Smart Greenhouse

 Design Goals - AL
Above is the what should be the general relationship of all the components to each other. One can

see the left half of the block diagram shows the hardware connections while the right half shows

all the software connections. The general functionality of our product is as follows:

 Hardware Goals - AL
Power starts from the either the battery pack we have planned or a wall outlet depending on if the

battery has enough charge to drive the system. The power will then go into regulators that will

convert the power into its required specification to drive each individual component of our system.

Once all the sensors have their required power, they will begin sending off their data and

79

measurements to its microcontroller. After every few minutes or when the user requests for it, the

main controller will request the observations of a certain plant within the system via Bluetooth,

the child microcontroller will then transmit its sensor information via Bluetooth for the parent

microcontroller to process the information and send it off to the Cloud when the user permits it.

The parent microcontroller will have control of the environment changers such as the grow lights,

ventilation fans, and water pump to be able to optimize the ecosystem’s growth patterns and be

the main interface for the user with its GUI. We also plan to have an idle state LED show, that will

add an aesthetically pleasing feature to the whole project.

We also plan to implement two children microcontrollers that will be able to send information

back to the parent controller by having two separate PCB boards that will be able to stick in to the

side of a soil base. These children PCBs will be planned to be powered via coin cell batteries that

and will be well within the max range of 10 meters of the Bluetooth modules to be able to

communicate back to the parent microcontroller. We also plan to have this PCB inside of a plastic

container as to protect it in the case that water were to accidently be sprayed by the water pumps

 Software Goals -AL
For the planned software that we want to implement; we want to implement a sort of optimized

code for the children microcontrollers that will be able to handle collecting data from its connected

sensors, acknowledge if any of the sensor aren’t working and sending off data once every few

minutes via Bluetooth. With this in mind, our parent microcontroller would have to be able receive

the data from the children microcontrollers at all times and send the information to the cloud, be

able to get information from the cloud and be able to adjust the environment modifiers based on

the feedback it gets from the cloud. We would also need to make a friendly GUI interface that

would be able to access any of the environment modifiers and be able to change them on demand

if the user wishes, be able to access any of the children microcontrollers’ data as necessary and

provide options to adjust the LED light show on the exterior of our system.

Other things to keep in mind are the fact the Bluetooth modules have their own way of

communicating to each other. With the BLE modules that we chose out to use our design, we have

to be aware of all the AT commands that we set up our software with as to prevent the children

microcontroller and parent microcontroller to miscommunicate with each other. This could be

from either having the child BLE module awake while the parent Bluetooth module is asleep and

visa versa, having the incorrect baud rates to be able to communicate with the right timing, etc.

 Power Supply & Rail Design - MM
This project will be utilizing a 12V, 10A, 120W DC power supply to step-down mains power, but

switching regulators will be needed to provide the appropriate voltage and current to each device.

To get a general idea of how the rails will be configured, the Webench Power Architect tool from

Texas Instruments was used. The main sources of current draw for the system – fans, humidifier,

pump, LEDs, and LCD display – were entered, and the image shown below in Figure 19 was

produced.

80

Figure 19- General power rail design

The Webench Power Architect generated a 5-rail output design with three switcher types: the

TPS560430Y Synchronous Step-Down Converter for low power loads like the fans, LCD, and

humidifier; the TPS562231 Synchronous Step-Down Buck Converter for the mid-tier power needs

of the pump; and for the largest load of the LEDs, the TPS40305 Synchronous Buck Controller.

Having five separate power rails and switching regulators may limit some efficiency in terms of

space on the PCB and power consumption, but this configuration ultimately provides a clear

method of control and protection for each mechanism.

81

 TPS56637 Synchronous Buck Converter - MM
The TPS56637 is a cost-optimized buck controller used in high performance DC-DC converters.

The device has a wide input range of 3V-20V [38] and the ability to support high load-current

applications; these characteristics make it ideal for power regulation to the LEDs.

While this device has higher output capabilities, more external components are needed to support

the design. The additional circuitry is to be optimized to limit space occupied on the printed circuit

board and minimize potential interference. Regardless, the design flexibility, power efficiency,

and safety characteristics make the TPS40305 Synchronous Buck Controller ideal for the high-

power device requirements present in this project. The schematic shown in Figure 20 displays the

circuitry that will be used for this power rail, delivering 5V and 5A to the LEDs.

Figure 20- LED power rail circuitry

 LMR62014X Simple Switcher - MM
The LMR62014 is a simple switching step-up regulator with an input voltage range of 2.7V-14V,

and output characteristics up to 20V and 1.4A [39]. Highly efficient with a 90% duty cycle and

additional current protection to the device it supplies, this switcher is an ideal fit for supplying the

fans. Additional benefits include a compact form and a design fully enabled for Webench Power

Architect support from Texas Instruments. The schematic in Figure 21 shows the circuitry that will

be used for this power rail, delivering 12V and 0.44mA to the fans.

Figure 21- Fan power rail circuitry

82

 TPS55330 Boost/SEPIC/Flyback DC-DC Regulator - MM
The TPS55330 is a switching regulator capable of operating in several common switching-

topologies. This device has an input range of 2.9V-16V and can support an output up to 22V [40].

Capable of driving 5A of load current, this device is also able to regulate output voltage with

current mode pulse width modulation (PWM) control, the switching frequency of which can be set

by an external resistor/external clock signal. These characteristics make it ideal for regulation of

motor or pump systems, as fewer external controls will be needed to send PWM’s to vary the

mechanical output of the pump to an ideal operating condition.

While the main power supply operates at 12V, the voltage will not need to be stepped up/down;

however, this regulator offers various overcurrent protections such as a programmable soft-start

function to limit inrush current during start up, cycle-by-cycle overcurrent limit, and thermal

shutdown. These added protections, as well as PWM capabilities for control, make this device

ideal for supplying the pumps. Figure 22 shows the circuitry to be used alongside the TPS55330

to deliver 12V/2A for the pumps.

Figure 22- Pump power rail circuitry

 TPS560430Y Synchronous Step-Down Converter - MM
The TPS560430Y is a simple DC-DC step-down converter capable of driving 600mA of load

current at a constant 5V output [41]. This makes it a good fit for the fans and humidifier as they

have lower power requirements. The wide input voltage range and dropout characteristics are ideal

for device protection in the case that voltage from the power supply fluctuates. This device can

maintain a 5V output up to a maximum input of 36V.

This device has a peak efficiency when operating at an input voltage of 8V rather than the 12V

used in this project, but the efficiency differential greatly decreases when the device is operating

near the maximum load current, which will be the case for the humidifier circuit. Figure 23 below

shows the circuitry to be used in conjunction with the TPS560430Y in order to deliver the

necessary 5V/500mA to the humidifier power rail.

83

Figure 23- Humidifier power rail circuitry

 TPS62175 Step-Down Converter with Sleep Mode - MM
The TPS62175 is a highly efficient synchronous step-down DC/DC converter with a wide input

range of 4.75-28V [42]. This device is ideal for stepping down 12V supply rails and can provide

up 500 mA output current. The characteristics of this device make it a great contender for voltage

regulation of the low-power devices in this project, such as needed for the LCD display screen.

The circuit shown in Figure 24 below displays the various components and component values used

alongside the TPS62175 Step-Down Converter to deliver 5V/150mA to the LCD power rail.

Figure 24- LCD display power rail circuitry

 TPS62177 Step Down Converter with Sleep Mode - MM
This device comes from the same family as the TPS62175 described above, but with a fixed output

of 3.3V [42]. The TPS62177 was designed with low-power microcontroller needs in mind. The

MSP432 microcontroller has a recommended VCC voltage of 3.3V, making this step-down

converter the ideal choice for regulating its power supply. The circuit shown in Figure 25 below

displays the components used alongside the TPS62177 to deliver 3.3V/100mA to the MSP430

microprocessor.

84

Figure 25- MSP430 power rail circuitry

 Efficiency and Overall Power Demands - MM
It is important to consider the ramifications of the power rail designs. In particular, efficiency

needs to be evaluated, as power dissipated by the circuitry will be transformed into heat. Excessive

heat lost by the system could potentially damage the equipment. In addition to power efficiency,

efficient use of space on the PCB should be considered prior to design. Table 24 below evaluates

these characteristics. The power supply circuitry has a combined power dissipation of 3.28W, total

efficiency of 94.63%, and a total footprint of 811mm2.

Table 24- Power Rail Efficiency Data

Model # Vin Iin Vout Iout
Power

Diss.
Efficiency Footprint

TPS56637 12V 2.21A 5V 5.00A 1.51W 94.3% 170 mm2

LMR62014X 12V 0.50A 12V 0.44A 0.26W 95.3% 73 mm2

TPS55330 12V 2.28A 12V 2.00A 1.04W 95.9% 287 mm2

TPS560430Y 12V 0.24A 5V 0.50A 0.34W 88.0% 95 mm2

TPS62175 12V 0.07A 5V 0.15A 0.08W 90.9% 96 mm2

TPS62177 12V 0.03A 3.3V 0.10A 0.06W 85.3% 90 mm2

 Totals: 3.28W 94.63% 811 mm2

85

 Embedded Software Design - JG
To monitor the plants, we want to develop sensor nodes that comprise of our various sensors such

as temperature, humidity, and soil moisture controlled by a low-level MCU like the

MSP430G2553 that can communicate with a more powerful master ARM MCU. The star

architecture is ideal for this project since the sensor nodes for each plant will all connect to the

main MCU. From the main MCU, data from the sensors will be pushed to the cloud to be stored

in our database and monitored on our GUI. Each sensor node will consist of a battery to keep it

running wirelessly, a Bluetooth module to connect to the master, the sensor equipment we use to

monitor the plants, and a USB port for configuration and debugging. The sensor node is shown in

the figure below.

Figure 26: Plant sensor node architecture

Ideally, our sensor node will operate in low power mode for most of its operation. Interrupts will

wake the sensor up when it is time to take a sensor reading. This conserves the most power as the

MSP430G2553 is optimized for low power consumption. When it is time to take a sensor reading,

an interrupt will occur to trigger a sensor read function and then create the JSON message to be

published. The Bluetooth connection will need to be established before data gets sent. Enabling

Bluetooth connection to stay on during times of the day will allow the user to make manual

requests for the data by publishing messages to the sensor node from our webserver or device GUI

to retrieve the sensor data. Sensor modules will be battery powered to stay wireless. Since the

device will run in low power mode most of the time, battery power should be good enough to last

the user for at least a year of operation.

86

 Communication Design - JG
Communication is centered around a master ARM microcontroller edge device that is suited with

an integrated WiFi module and Bluetooth transceiver. Bluetooth will allow the main MCU to

gather data from sensor nodes, forming a star network. Instead of wirelessly connecting all of our

sensor nodes, we’ll push and receive all messages from the main MCU. Once our data is collected,

we use PubNub as an MQTT broker to publish the data to a channel that our web application is

subscribed to. From there, a JSON string containing our data can be unbundled and displayed for

the remote user. Data will be stored in a database for historical reference. To take advantage of

external online APIs, our device will trigger text alerts to the user when it needs attention, such as

water levels being low. The following figure displays how the communication works between the

master MCU, sensor nodes, and online resources.

Figure 27: Communication Block Diagram

87

 GUI Design - AL
The GUI will provide the user with a touch screen interface for monitoring sensor values from the

plants and issuing commands to the device. The optimal design for the GUI is to make it as user-

friendly as possible, having as many unambiguous instructions for each button, have a help

window on each of the GUI page to describe what each function on the page does, having

descriptive error messages when the software gets unexpected data from sensor/ environment

changers, and having a descriptive user guide to explain and help troubleshoot things that the GUI

is intended to do.

 PCB Design - DM
Prebuilt PCBs like the Texas instrument Launchpads are great for fast prototyping. However, these

boards are often over-equipped for specific designs since they’re made to support a variety of

purposes. Since we want our circuitry to be as compact as possible, breadboards are out of the

question. PCBs also make circuitry easier to wire than solderable breadboards, since we won’t

need to make solder traces to connect components. Our PCB will be designed using software,

which we can then give the finished design to a manufacturer make for us. Designing a PCB is

also a senior design requirement, which means it will be an essential part of our project.

 PCB Planning - DM
The first step in designing our PCB is planning out our circuitry on paper, and then porting that

design over to a PCB design software. We decided on using Kicad as the software for our

SmartLeaf project. For our design we have two child MCUs and one parent MCU, so this requires

three different schematics and PCB layouts. The main challenge with designing these PCBs stems

mainly from the design of the parent microcontroller and the associated peripherals. This is since

the parent MCU the MSP432P401R along with multiple peripherals have their own associated

power circuit. Before power reaches any one of the peripherals as well as our MSP432 in our PCB,

they need to pass through their own individual regulator first.

 Schematic Creation – DM/AL
Since we are using Kicad, we need to utilize the Eeschema schematic software in order to create

this. In the schematic for our parent microcontroller, there was simply not enough room to fit

everything on one schematic sheet, so in order to save space, we utilized the built-in tool to create

hierarchal sheets within the schematic as well as using the function for global labeling. Global

labeling allows us to connect pins on multiple components with each other without the need for an

extensive amount of wires creating a clunky mess on the schematic itself. First schematic we’re

going to talk about is the one for the parent containing the six individual regulators within it.

Utilizing the information from the datasheets for all the components, we can figure out where to

allocate each pin, of course since this is the parent microcontroller the MSP432 it contains many

GPIO pins which we utilize for all our peripherals. Due to the size of the symbol on the schematic,

drawing individual wires and connections would not be very efficient and cause more confusion

than anything, so as you can see global symbols are placed on every single pin to signal a

connection to another component. On the left, there are six hierarchal sheets, each labeled with a

name to their corresponding peripheral component to connect to. At first while using this function,

there was a little issue regarding the connection of pins between sheets, but this is due to two

88

different functions in the Eeschema program with near similar functions. There are global labels

which connect multiple components with each other in the schematic, but if a hierarchal sheet is

created, we need to utilize the tool known as a hierarchal label. Using these labels within the sheets

allow us to connect the regulators in those sheets to the components within the main sheet of the

schematic. Another issue regarding the regulators are the footprint and symbol availability. Some

of the regulators for some of the circuits did not have an available symbol or footprint in any of

the libraries to add to the schematic. Those were minor inconveniences which are mitigated by

creating them from scratch in Eeschema. Kicad attempts to make creating these symbols and

footprints easy with their program. Of course, the datasheets needed to be looked at in order to

create these symbols and get the symbol size and pinouts correct. In the center of the main sheet

for the schematic is our parent microcontroller which is the MSP432 that we’re using, and to the

right of the microcontroller are all the peripherals and necessary things we’ll need to attach to that

MCU. On the right we have connections for the LCD, power rail, debugger, LEDs, fans, water

sensor, water pump, and the parent Bluetooth module, the CC2564MODA as well as a crystal to

take care of the clocks on the microcontroller. The debugger is needed to be manually added to the

schematic because the microcontroller does not have a built-in debugger and the addition of a

schematic like this is necessary for debugging purposes of the MSP432 microcontroller.

Everything on the connectors are connected to their corresponding pins via the global label in

Eeschema. Creating these schematics required us to be carefully analyzing every single pin on the

microcontrollers as well as the peripherals and making sure that all our components are being

connected in the proper manner.

Figure 28: Schematic for Parent MCU

89

9.5.2.1 Hierarchal Sheet #1 for Fans - DM
For the LEDs, when it comes to power, we needed a simple switcher for our purposes. This

regulator is the LMR62014XMF. Now when using Kicad we had issues finding certain

components within the built-in libraries in the software. Usage of websites such as “SnapEDA” as

well as “Componentsearchengine” were necessary in order to find symbols for a good majority of

the regulators as well as their associated footprints for that specific symbol. Though in this case,

Kicads libraries contained what we needed with regards to the symbol for the LMR62014XMF

and the associated footprint for it. So, we didn’t blindly choose the footprint simply based off the

fact Kicad had it available within their libraries, we double checked the information that was

already available on the footprint with the information that was available on the datasheet for the

switcher.

Figure 29: Fan Power Circuit with Connections via Global Labels in Kicad

For the footprint, we already decided we’re going to be using surface mount for nearly all our

components on all of our PCBs for simplicity purposes, decided footprint is the

Package_TO_SMD:SOT-23-5 within Kicad. It has all the pads we need to match our pins and

porting it to PCBNew via importing of the netlist showed no issues with the ratsnest giving us a

clear solid outline for our traces to each individual pad on the components. There were other

options regarding footprints for this specific component such us creating it using the footprint

90

editor just in case there was a sort of mistake with the attained footprint. Though, this was not the

case for this footprint because using the footprint editor and cross-checking with the datasheet for

the LMR62014XMF, we can see that the dimensions match up with little to no issues which means

that it’s safe for us to use our chosen footprint for this component. Further verifications that we

performed were the electrical rules checker within Eeschema as well as careful analyzation of the

surface mount pads on the footprint itself. If there were any inconsistencies that we noticed with

the labeling of the nets on the pads, we’d have to find out the error that is being caused with that

specific connection in the schematic. Even if there’s a created netlist for the schematic that can be

created even if there are no errors with your connections just so if we properly created our reference

fields. What we needed to verify within our schematics were the wirings as well as the attached

global labels pairing each power circuit with their designated peripheral or microcontroller. So

initially our ratsnest needed to be verified with careful analyzation.

Figure 30: Assigned Footprint for LMR62014XMF Simple Switcher

9.5.2.2 Hierarchal Sheet #2 for LEDs – DM
For the LED power circuit, it was not as easy to deal with in comparison to the circuit for the fans.

Even whilst utilizing all available sources to easily locate the symbol for the TPS56637RPA as

well as the footprint is was not available anywhere. I had to manually create the symbol for the

synchronous buck-converter in Eeschema as well as manually create the footprint using the

91

footprint editor tool in Kicad. After creating the footprint manually, we went about carefully

verifying everything that we have done in terms of our connections to the peripheral for this power

circuit, being the LEDs as well as verifying these connections with the electrical rules checker

within the Eeschema software to make sure everything is up to standard with our connections

within the schematic.

Figure 31: LED Power Circuit with Connections via Global Labels in Kicad

Using the footprint editor in Kicad, we had to look at the datasheet for the TPS56637 and scroll

down to the section regarding the dimensions of the part and had to create our pads based off the

package of the synchronous buck converter. This requires careful precision to do, so double

checking the distances and dimensions are important so that the part itself does not have any issues

with fitting on the pad as well as the PCB properly. The use of silkscreen and to create the outline

is extremely important for the creation of this footprint. Since this is the first time we created a

footprint, there would be initial difficulties with creating the library for it. Being able for us to use

the footprint required us to create a separate library that is saved outside of Kicad’s folders locally

as a .pretty file is required in order to even save the footprint that we created. Then we assigned

the footprint to that separate library and paired it with our symbol within the schematic and then

generated the netlist for it. Our footprint creation was also a little worrisome based off the fact that

we cannot be wrong whatsoever with our assigned dimensions. So, on paper we had to make sure

that our mathematics was on point for the dimensions of the designated footprint during creation.

92

Also, the layers needed to be created to the proper specifications such as making sure we had

surface mount and silkscreen.

Figure 32: Assigned Footprint for the TPS56637RPA Synchronous Buck Converter

9.5.2.3 Hierarchal Sheet #3 for Water Pump - DM
For the water pump, the voltage regulator the TPS55330RTER had no readily available symbol in

Kicads main libraries or anywhere readily accessible, though there was availability for a

downloadable footprint for the regulator itself which is fine since the symbol is not as difficult to

create in comparison to the footprint of the component. Since the footprint is already readily

available to tag onto the symbol, generating the netlist and porting into the design software will go

without any issues. We needed to make sure that the circuit was properly labeled with each

component in order to generate a proper netlist. There can be no inconsistencies with the reference

fields which we accounted for. Each individual component within the schematic for the water

pump has its own unique identifier for this known as the reference field. If the reference field for

the schematic is solid, then the netlist will be in order and we will not arrive with any errors. The

good thing about Eeschema and the generation of the netlist is that it warns us if there are any

minor components that contain the same reference field which allows us to mitigate all these

problems that we were potentially facing. This is also further paired with the electrical rules

checker to make sure connections were properly made as well. Though we ran into a critical

situation where due to one of the global labels that we made, it was not being properly connected

to its designated peripheral. This is due to human error on our part via inconsistent labeling and

93

was easily fixed by altering the name of the global labels that was pairing the regulator to the

incorrect peripheral.

Figure 33: Water Pump Power Circuit with Connections via Global Labels in Kicad

For the TPS55330RTER DC-DC regulator the footprint was readily available within Kicad’s

libraries. Of course, since we’re dealing with surface mount components, it narrows the list down

to what we needed to choose in terms of footprints. Plus checking the regulator on

Componentchecker or SnapEDA both give us the same exact footprint that we should be using for

this DC-DC regulator. Due to this fact, we decided to trust in these validations of these two

websites, but we also verified the dimension of the specific footprint with the information given

to us about the component within the datasheet as well just to be on the safe side. Also, to further

verify that the footprint was correct for the DC-DC regulator, we used the electrical rules checker

within the Eeschema software in Kicad to make sure all connections were made and then we even

further verified everything by checking each individual pad on the surface mount footprint that we

chose with the ratsnest located within PCBNew. Verifying the pads and the connections that the

ratsnest is showing us put our concerns at ease when deciding on the footprint that we’re using.

Though it is easy for us to be missing any errors even whilst having properly made our footprint.

We needed to see where the ratsnest was connecting the DC-DC regulator to make sure that the

pin that it’s being connected to is also properly labeled. We do not want to be in a situation where

we have our power circuits be properly created but the nets within the peripherals ended up causing

us any major issues.

94

Figure 34: Assigned Footprint for the TPS55330RTER DC-DC Regulator

9.5.2.4 Hierarchal Sheet #4 for Humidifier - DM
For the power circuit for our humidifier that we’re going to be using in our project, we’re using

the TPS560430Y step-down converter. Now, for this component the component once again like

most of the other symbols for these power rail circuits needed to be created from scratch utilizing

the symbol editor and creator in Eeschema. All that needed to be done is assign a reference field

for the step-down converter as well as assign it the proper name. After these designations, we

simply update our netlist once again and then port it to PCBNew after giving it the proper

designated footprint for it.

Figure 35: Humidifier Power Circuit with Connections via Global Labels in Kicad

95

For this footprint, it was standard to designate to this component since this one was also one that

didn’t need to be manually created as well. Being a surface mount component there was only one

type of package for this TPS560430Y so options for the footprint are limited. There were six

connections on the symbol within the schematic with their own designations to the pads and the

footprint we decided on which is the SOT95P-280X145-6N contains the proper dimensions for

our component which is optimal for us and saves us a lot of time.

Figure 36: Assigned Footprint for the TPS560430Y Synchronous Step-Down Converter

9.5.2.5 Hierarchal Sheet #5 for the LCD Screen - DM
For the LCD screen the step-down converter that we used being the TPS62175DQC fortunately

had a readily available symbol within Kicad’s default libraries. Something such as this is very

useful for us because the symbol being there more than likely means that the part itself is widely

used and there are lots of support for the component as well. Mitigating the need to create the

symbol saves time on the creation of the schematic. There is no need to place pins and manually

assign the nets for the creation either as everything is already created and finished in the symbol.

Having this level of availability for us allows us to save time on the creation of the symbol and

instead utilize the extra time we have by double checking the pinouts in the hierarchal sheet and

checking for other errors. Eeschema allowed us to be able to verify any critical errors with their

electrical rules checker program within the software. This was able to pinpoint any inconsistencies

with our labeling on each pin on every component in our schematic. It’ll also verify this check for

the circuits that we have for the power rail within all six of our hierarchal sheets making sure that

the global pins that we placed for the connection of the peripherals on the main sheet are being

connected. Utilizing this software, we were able to verify this check for the circuit within the LCD

screen hierarchal sheet assuring that everything was connected.

96

Figure 37: LCD Screen Power Circuit with Connections via Global Labels in Kicad

Regarding the footprint for our TPS62175DQC step-down converter for the LCD screen, our

selection was a difficult choice because there were multiple recommendations for footprints for

the specific symbol for that step-down converter. Though navigating around that wasn’t difficult

because all we needed to do was look at the pinouts in the datasheet for the converter as well as

careful observation of the datasheet as well. Observing the datasheet for the step-down converter

allowed us to verify the pins and the dimensions for it so that we would be able to choose the

correct footprint.

Figure 38: Assigned Footprint for the TPS62175DQC Step-Down Converter

97

9.5.2.6 Hierarchal Sheet #6 for the MSP432 – DM/AL
Now, for the main microcontroller on the parent PCB, there’s a step-down converter being the

TPS62177DQCR. This symbol in the power circuit was unfortunately not found within the main

libraries within Kicad, nor was the symbol found anywhere else that is readily available. The

way we went about creating this step-down converter is by taking the same approach we made

for the previous hierarchal sheets in which we needed to use the symbol editor which is located

within the Eeschema software. Verifying all of our needed pins for the step-down converter was

something that we went about doing

Figure 39: MSP432 Power Circuit with Connections via Global Labels in Kicad

When it comes down to the designation of the footprint for the MSP432, since the microcontroller

itself is used in so many projects, hobbyists or not, the footprint is readily available nearly

anywhere someone can look, though it’s easy to make a simple mistake regarding the specific

footprint since there are many versions of the MSP432 all with varying numbers of pins so we had

to triple check that the footprint that we got our hands on for the designation to the symbol was as

accurate as can be. To also once again verify that our footprint was a solid choice, we verified the

netlist according to this footprint using the PCBNew viewer to analyze our nets on that component

for the step-down converter. We simply looked at the ratsnest and verified that all the connections

are being made to the proper components such as all of the capacitors, resistors, grounds, inductors

as well as the connections to the main power supply and the main microcontroller the MSP432.

Verifying all these connecting via the electrical rules check and the ratsnest in the PCBNew

software was paramount to us not making any errors.

98

Figure 40: Assigned Footprint for the TPS62177DQCR Step-Down Converter

Next, we have the child microcontrollers as well as their schematics. These were much easier to

create due to the lack of attached regulators and peripherals. They are on a much smaller scale than

the schematic for the parent MSP432 microcontroller. How these two child MCU schematics were

created was by opening two more different projects in Kicad after working on the schematic for

the parent microcontroller. For the first schematic, what we added first was the MSP430

microcontroller and the few additions it required. We added connections for the soil moisture

sensor, PH sensor, temperature and humidity sensor as well as a Bluetooth module. When it comes

to providing power to this PCB, we’re going to be connecting them to batteries for power. For both

schematics, there was no need to utilize the hierarchal sheets feature because we could fit

everything on the main schematic sheet. Organization is also made easy for these two because of

another useful tool in Eeschema which allows us to draw graphic lines around our components as

well as a tool to place text wherever we wish within the schematic. In our experience the best way

of utilizing these tools for the schematics for the child PCBs were to individually separate our

components using the tool for graphic lines and then label each one with the text creator. This

made pinpointing each component within these schematics simple and straightforward as well.

Though this is all just for the child microcontroller with the three attached peripherals. The same

scenario does not occur with the parent schematics since there is simply just not enough room to

create a neat and organized template using graphic lines. The best that we could do is to simply

organize the components in such a manner that they’re easily identifiable via the connections as

well as utilizing the hierarchal sheet with the text editor to know which circuit is connected to what

component. This makes navigation around our schematics rudimentary without too much being

cluttered on the screen. Also pairing this feature along with the global labels allow us to not have

wires overlapping multiple components within our schematics for these child PCBs.

99

Figure 41: Schematic for MCU Child #1

The other schematic we created was for the old MSP430 PCB we’re creating. This other schematic

is very similar to the other child PCB is terms of connections and peripherals, but the main

difference is that one of these schematics contain a temperature and humidity sensor while the

other one does not. This second schematic does not contain the temperature and humidity sensor

and only contains connectors for soil moisture as well as a PH sensor. Standard symbols for 01x03

connectors are mainly used for the peripherals for this child microcontroller as well as the other

one. The Bluetooth module symbol that was added was not originally available in Kicad libraries

but there were available footprints and libraries for our specific module available on Github for us

to access. Also, there is also are no need for the usage of a regulator in these child PCBs as they

are only going to be battery powered, unlike the parent which is going to be powered via an outlet.

The connectors that we’re going to be using are the same ones as the parent schematic as well.

There was no need to change them since the connections to the MSP430 operate in the same

manner as with the connections from the sensors on the parent schematic being attached to the

MSP432 microcontroller. Each one is attached to a ground, a voltage source which in this case is

the battery, and a GPIO pin.

100

Figure 42: Schematic for MCU Child #2

 Assigning Footprints to Schematic Symbols - DM
Next, we needed to figure out what exact footprints we needed for our PCB components. We

already decided on the footprints that we’re going to be using for our regulators for the peripherals,

now it’s just deciding on the footprints for the other components. Mainly, we wanted to have

footprints for our components so that they are mainly surface mount. Surface mount components

that are a decent enough size allow us to be able to hand-solder our components to the PCB without

the need or use of a reflow oven. Needed to be able to use a reflow oven inconveniences us in

terms of time due to the need to careful application of solder paste to the board. If we have too

little solder paste or if we have too much, there will not be a solid connection from the components

to the PCB, so it’s very important that we decide on package sizes that are feasible for us to be

able to solder to the board. When it comes to choosing packages for resistors and capacitors, we

decided on 0805 package sizes which allow us to be able to solder by hand. If any difficulties arise

from soldering by hand with these package sizes, we can use flux which allows us to easily solder

these components to the PCB since solder will flow towards the flux if applied to the component.

Some components are not too difficult to assign footprints to their symbols such as the MSP432

or the MSP430 microcontrollers because they already have their own library with the available

footprint. We need to decide on packages for the other components such as our connectors for our

peripheral components. For our diodes, we decided to go with a surface mount 0603 which is a

small package size, but still a good enough size for hand soldering to the PCB. We need to make

sure that our footprints are also selected in a way to save space on the board to give us enough

clearance to be able to solder properly without accidentally damaging other components with a

soldering iron. For this same exact reason, when deciding on the package to use for our inductors

we also decided to go with a surface mount with a manageable package size of 0805, which is the

same size of our resistors and capacitors. Remaining consistent with package sizes also reduces

101

clutter and makes the PCB seem much more organized. Other components that we needed to decide

footprints for were the LEDs, fans, sensors, pump and humidifier. An optimal selection for these

components is female connectors that require male pins for connection. These allow for easy

connection to the PCB from the peripheral components via male jumper wires. For the debugger

for the MSP432, we decided to have a through holes connectors since it is simply for testing and

debugging, not there in order to occupy those areas on the PCB permanently. When it comes to

the footprint for the crystal symbol for the schematic, Kicad’s libraries contains a plentiful amount

of them, so we decided to choose a symbol that was a decent size for the PCB and won’t take up

a lot of space. Of course, the need to avoid using a reflow oven for our team is paramount because

we do not want to be running the risk of making an extremely critical mistake with setting up the

reflow and ultimately end up bricking the microcontroller and ruining connections on the PCB

making the circuit board that we ordered ultimately a waste of time. On the opposite end of the

spectrum, soldering irons are not too expensive and gives us more control on how we’re going to

be applying our components to the circuit board. We can also greatly mitigate the risk of burning

any of our components by using a soldering iron with a specific temperature adjuster. These are

just temporary solutions to using extremely small package sizes for our surface mount components

on our parent and child circuit board designs. While also deciding which packages, we’re going to

choose for our minor components we also made sure to remain as consistent as possible with them

as well in order to avoid any conflictions.

Figure 43: Footprint assignment to symbols in parent PCB

 PCB Layouts - DM
Now after we assigned footprints to all our symbols in the schematic, we needed to save our

schematic utilize a tool and generate a netlist within Eeschema which will allow us to transfer our

symbols into the PCB software within Kicad known as PCBNew. Making sure the netlist is perfect

is paramount because if it isn’t PCBNew will give us a ratsnest with pads not giving a sign to a

connection. Having a proper netlist will allow PCBNew to properly organize and label each one

102

of the pads on all the components along with their corresponding connection. The ratsnest that is

generated allows us to figure out where the traces will go. If a proper netlist was not created, there

will be conflictions within PCBNew with warnings and errors prompting the user to go back into

the schematic and fix their connections. It’s better to catch the issues of a flawed netlist early to

avoid losing many hours of hard work. Of course, a little confusion arises at first since generating

the netlist and then opening the PCB software does nothing. We also need to load the netlist within

the design software as well even though we just created it within Eeschema. After doing this, we

arrive to a cluttered mess with our components within the design software. Kicad requires us to

utilize keyboard hotkeys in order to be able to do anything within PCBNew such as unlocking

components and allowing us to organize and move them around. After learning all the hotkeys for

PCBNew, we begin by organizing all our components so that they’re easily identifiable on the

board. Next, we need to utilize the layers section on the right-hand side of the PCB software and

navigate to our edge cuts. These layers are used to create the borders for the board itself which is

great in order to save space or to add more space. We want our PCB to not have any areas in which

there is nothing being used. Of course, we’re going to leave more than enough room for our traces

to be able to be a little separate from each other. Plus, we want to be able to have our PCB to be

able to be mounted, so we added mounting holes to each corner of the board not too small and not

too large. The size of the holes should be large enough to be able to get a standard screw size and

manually attach and mount our PCB. Though if necessary, we could create our own footprint for

these mounting screws as well.

Figure 44: PCBNew Main PCB outline

For our other PCBs that have the MSP430, the boards for those will be much smaller simply

because there are way less components populating the board. Populating the board containing the

MSP430 are a few sensors, Bluetooth and of course the main microcontroller. The board will be a

little larger due to us needing to add mounting holes to the corner of the boards themselves.

Depending on whether we’re going to have multiple layers for these minimal number of

components depends on how big the board itself will end up being. Even though these PCBs are

103

small it’s also easy to make simple errors with anything regarding the schematic, footprints and

symbols.

Figure 45: PCBNew Child #1 PCB Outline

As we can see in this image of the first child PCB, the board itself is much smaller than the

parent, containing only a few components whereas in comparison to the parent the board is

nearly twice the size of this one. Also, from the 2D view in PCB new we can see that the 2.1mm

mounting holes for the board show very little clearance between the edge cuts as well as one of

the sensors and the MSP430, but we can see how the board itself looks by utilizing the built-in

3D viewer in Kicad. From 3D view we can see that the mounting holes for the board gives good

clearance.

Figure 46: 3D Viewer Mounting Hole clearance on MSP430 on child PCB #1

For the other MSP430 PCB, the only difference is that it does not have a sensor for temperature

and humidity, other than that the PCB should look extremely similar to the other child PCB with

all three sensors. Of course, the size of the PCB may increase depending on how we’re going to

approach the traces between components. Below we can see how the PCB looks for the second

104

child PCB. Though with this PCB, due to the lack of one extra sensor, we may be able to create

the board such that it is much smaller before we ship it out for board development.

Figure 47: PCBNew Child #2 PCB Outline

 Traces and Planes - DM
For our parent PCB, it’s necessary that we have multiple layers for us to create all the necessary

traces on the board. With the number of components that we have on the main PCB, a single layer

is impossible to do since overlapping traces is inevitable. We need to create multiple layers in

order to have a plane for our ground as well. Having a ground plane is essential for our design,

since most of our components are also being tied to ground. Also, having many components on

the board even while spacing everything out, we’ll be held up due to the numerous amounts of

traces on the top layer of the board. Even if we were to reduce the widths of our traces, there will

be inevitable overlapping which we need to avoid at all costs. Of course, this is mainly an issue

for the main PCB due to the numerous components, for the child PCBs with only a couple

components, we can simply reduce the widths of our traces to make all our connections on a single

layer. Also, another issue we needed to figure out and we did was how to associate all our grounds

on the PCB. PCBNew has a very useful feature that allows us to add zones on our design and

associate those zones with a specific net that we defined on our schematics. For our project

purposes and to make things easy on us when it comes to grounding certain components, we’re

going to use Kicad’s feature of creating filled zones and fill those zones with straight copper, which

will allow us to ground our components. Since the PCB will be multiple layers, we’ll have the

plane for our ground be on a layer that isn’t near the top of the PCB. Instead we’ll have the layer

more than likely rest underneath the top layer which is hidden and lead our traces for ground to

the copper ground. Of course, since a large percentage of our components have a tie to ground,

we’ll more than likely surround a good majority of the PCB design with the ground plane for the

ease of grounding those components.

105

Figure 48: Example of a Ground Plane in PCBNew

10.0 Component Integration/ Testing – MM/AL
This section serves to test the condition and functionality of major components to be utilized in

this project. Testing will confirm a device’s utilization for the overall design and identify major

issues prior to installation. Through continuity testing and functionality testing one is usually able

to troubleshoot most problems on the board level.

 Hardware Testing – MM/AL
This section serves to discuss the experiments that will be conducted to validate the safety and

functionality of power supplies and regulators used in this project. This testing is of great

importance as it should ensure no faulty power modules be installed, which would potentially

break and damage equipment downstream. Equipment broken during runtime will contribute

additional cost and time for shipping and repairs and should be avoided whenever possible.

 Continuity Testing -AL
On the actual design of our indoor greenhouse system, we will have to do a series of continuity

testing to ensure that all of the connections that we made on our PCBs for both the main

microcontrollers and the peripheral microcontrollers are all soldered correctly and all of the parts

are correctly matching the schematics that we created from our PCB creator. To do this we will

have individuals looking at all the schematics that we created as a reference and have them probe

out each of the components with a handheld multimeter. The task itself might be considered tedious

but is in fact one of the most important hardware testing that we will have to undergo in this project.

This is because if we find that if any of the connections in the hard is compromised for whatever

106

reason it goes to say that it might cause a trickle effect throughout the whole system, causing

incorrect signals to be sent between devices or power lines being cut off from where current needs

to be delivered.

If we were to find discontinuities within a section of our system whether it be within the PCBs that

we created and ordered from our vendors or from the peripheral devices such as the temperature

sensor, pH sensor, water pump, etc., we will undergo the steps to mend the connections by either

soldering the broken connection or by attaching a jumper wire from the two connections in

question.

 Power Supply Functionality Test - MM
The Idealy 120W power supply will undergo three tests in order to verify proper functionality for

use in the indoor greenhouse system. The primary test will serve to measure the power supply unit

(PSU)’s voltage regulation capacity. To do this, the PSU will be plugged into a standard receptacle

and the output voltage (with no load connected) will be measured using a digital multimeter. The

expected output is a steady 12V. Small variances to this amount can be negated as long and the

measurement maintains consistency. Large variances, however, are indicative of power supply

failure. In this case, a new unit will have to be ordered and the model reconsidered for viability

within this project.

If the test above is passed, the second test will begin. This will be conducted in the same manner

as the previous test, but at full-load conditions. The Ideally PSU has a maximum load capacity of

10A. An electronic load will be used to simulate the full-load condition of the supply.

The third test serves to check the ripple voltage characteristics of the transformed output.

Unfortunately, Idealy does not provide an allowable range for ripple voltage; comparable PSU’s

can serve as a basis for evaluation. In any case, it should be as small as possible to indicate optimum

performance. While at a full-load of 10A (as simulated by the electronic load), a digital

oscilloscope will be connected in parallel to the load to provide an indicator of ripple voltage.

 Voltage Regulator Functionality Test - MM
The voltage regulators will be used to produce the power rails needed for the various devices and

control mechanisms. To test their functionality for use in our project, a handful of experiments will

be conducted to ensure the proper power requirements are being provided to each rail prior to

connection to devices downstream. While it is difficult to purchase the specified regulators in

reasonable quantities, Texas Instruments allows users to request samples of the individual devices

through the Webench Power Architect tool. This will give the team the chance to test each

regulator prior to finalizing and ordering the printed circuit board.

Once the devices have arrived (along with their associated circuitry), tests similar to those

conducted for the power supply will be carried out for the regulators. An electronic load will be

used to simulate the expected load of the control equipment, and the output voltage and current

characteristics will be measured and recorded using a digital multimeter. Oscilloscope

measurements should be taken to determine if the ripple voltage is in line with the expected values

provided in the data sheets. Two iterations of these tests should be conducted, one with the input

voltage source being a lab-standard DC power supply, and the second wave of tests being with the

107

Idealy power supply. This will be helpful in identifying any compatibility issues or unwanted

interference amongst the regulators and the Idealy power supply.

 Microcontroller Functionality Testing - AL
To test if the ARM processor and on the main controller PCB and the MSP430s are working on

the peripheral controllers. We will run a simple sample code on each of the devices to make sure

that each of the pins that are used are intact are able to receive and transmit signals. This program

will be similar to a “Hello World” project where we will have a single test LED on all of the boards

we create and have it on a two second flashing interval so that we will know that it is operational.

 Temperature/Humidity Sensor Testing - AL
For the four sensors used in this project, testing needs to be conducted to validate their functionality

and approve their inclusion in the SmartLeaf system. This testing will also provide an opportunity

to interface directly with the microcontrollers and identify any unforeseen compatibility issues

prior to installation within the unit.

To verify that the temperature/ humidity sensor is functional, we will have two separate

environments, one that is hotter and more humid (such as outside during the Florida summer) and

another environment that is colder and less humid (indoors with air conditioning). An external

humidity and temperature monitoring device will be needed to serve as a control for this

experiment. We will then power up the temperature/ humidity sensor via microcontroller or power

supply and then place the sensor in one of the environments and test if the readings are near correct

within the boundaries that we expect. Next, we will place the sensor in the other environment

almost right away as to have the sensor have the most contrast of reading in a period of time and

check again if the readings it is emitting is within the boundaries of what we expect.

If the readings between both environments what we expect, all is well. If not though, we will go

through a series of testing to see why the sensor failed to observe the readings we expected. We

will first check if there are any continuity connection issues within the sensor as to see if one or

more of the components weren’t getting the power it needed to or created short/ open circuits.

Next, we would check the code within the microcontroller to see if the controller was not reading

the bits that have the information correctly, if the microcontroller was connected to the sensor the

wrong way, if the sensor was sending information to the wrong microcontroller pin, etc.

Once figuring out its respective problem, we can then fix the solution in a lab setting or by hand.

If not, then we would then have to consider either replacing the whole sensor completely or having

another team member look at the sensor and check if they can see the issue from another angle.

 Soil Moisture Sensor Testing - AL
To verify if the soil moisture sensor is functional, it will be similar than with the temperature/

humidity sensor. An analog soil moisture probe will be used as a control and provide context for

the data being collected by the sensor. We will have two separate environments except now one

of them will be in a dried soil environment and the other in a totally saturated in water environment.

We will then power up the soil moisture sensor via microcontroller or power supply and then place

the sensor in one of the environments and test if the reading are near correct within the boundaries

108

that we expect. Next, we will place the sensor in the other environment almost right away as to

have the sensor have the most contrast of reading in a period of time and check again if the readings

it is emitting is within the boundaries of what we expect.

If the readings between both environments what we expect, all is well. If not though, we will go

through a series of testing to see why the sensor failed to observe the readings we expected. We

will first check if there are any continuity connection issues within the sensor as to see if one or

more of the components weren’t getting the power it needed to or created short/ open circuits.

Next, we would check the code within the microcontroller to see if the controller was not reading

the bits that have the information correctly, if the microcontroller was connected to the sensor the

wrong way, if the sensor was sending information to the wrong microcontroller pin, etc.

Once figuring out its respective problem, we can then fix the solution in a lab setting or by hand.

If not, then we would then have to consider either replacing the whole sensor completely or having

another team member look at the sensor and check if they can see the issue from another angle.

 pH Sensor Testing - MM
To test the functionality of the pH sensor selected for this project, a few experiments will be

conducted using a few soil samples of different conditions. Standard pH strips are cheap and can

serve as a control measurement for the data received from the sensor. The strips can also provide

context for said data, as there is a possibility that the data received will not be in recognizable units

for pH and could need a multiplier to be properly displayed. If the sensor readings are comparable

to those of the pH strips, the pH sensor will be approved for use in the SmartLeaf system.

 Fan Functionality Testing - AL
To confirm that the fans that we purchased are working correctly, we will pass the operating

voltage and current to the fan via an outside power source and see if the fan will operate through

its power connection. If the fan does not work when plugged into the power source, we can assume

that there is there is a problem with the circuitry of the fan, thus we would have to either buy

another on search for an alternative component that would equivalate to removing heat from the

greenhouse system.

When we receive an operating fan, we would then move on to seeing if it is compatible with the

microcontroller that we have. Once verifying that the code we created to control the fan is correct,

we would connect the fan to the microcontroller, make sure we have all the data signals matched

up to the correct pins from the code itself and let the code run. If the fan is not operational at this

step, then we can assume that there is still something wrong with the code or the fact that the

command signals to the fan are being compromised. If this is to occur, the way to go about fixing

this would be for us to use an oscilloscope to sense if there are any compromises of data error

being sent from the microcontroller to the fan.

 Pump Functionality Testing - AL
To verify that the water we purchased are working correctly, it will undergo nearly the same testing

that the fan went though. We will pass the operating voltage and current to the water pump via an

outside power source and see if the water pump will operate through its usual power connection.

109

If the water pump does not work when plugged into the power source, we can assume that there is

there is a problem with the circuitry of the water pump, thus we would have to either buy another

on search for an alternative component.

When we receive an operating water pump, we would then move on to seeing if it is compatible

with the microcontroller that we have. Once verifying that the code we created to control the water

pump is correct, we would connect the water pump to the microcontroller, make sure we have all

the data signals matched up to the correct pins from the code itself and let the code run. If the water

pump is not operational at this step, then we can assume that there is still something wrong with

the code or the fact that the command signals to the water pump are being compromised. If this is

to occur, the way to go about fixing this would be for us to use an oscilloscope to sense if there are

any compromises of data error being sent from the microcontroller to the water pump.

 LEDs Testing -AL
To verify if the LEDs throughout the greenhouse system are operating correctly, we will go

through a series of steps to ensure that the connections between each LED are stable and

acceptable. Luckily with the Chinly LED strip, all the connections between each LED are secure

and waterproof. The only way they could be compromised is if we were to fold the actual strip to

a point where no current could flow trough the strip or if we were to make an incorrect cut between

the strip when creating smaller portions from the five-meter strip.

Once we have confirmed that there are no continuity compromises with the given LED strip, we

can start toe process of confirming if the code to control the LEDs are correct. Luckily there are

many LED controller libraries on the internet that are more than capable to be used as references

to create our own unique led patterns. Although there would be many led strips to take into account

for at different sizes, it is not impossible to control them using a single microcontroller.

To test to see if each individual LED is operational we will have drive out a code that will run

though and turn on each LED in the strip one color at a rate of 5 LEDs per second. Once the

sequence gets to the end of the strip it will restart in the order of red, green, blue, and finally white;

then at a sequence of 10% brightness, 50% brightness, and 75% brightness to test out if the

individual LED is able to handle a sudden change of brightness.

 LCD Screen - AL
To verify the power up sequence of the LCD screen, we will undergo a series of tests by sending

known images to the LCD screen to test out if all of the data pins are reading correctly and that

none of the chips on the LCD board are experiencing any difficulties. If the expected image does

not show up on the screen when it is being sent, the following procedures should go as follows.

Acquire an oscilloscope to test out if the bits of a estimated broken pin is getting and see if the

bitstream going toward the pin is what is expected. If that is not the case, run a continuity testing

to see if there is an open or short circuit anywhere on the LCD board and rerun the testing with the

oscilloscope. If even after that the problem is not solved, look at the IC components on the and test

those pins to see if those are correct.

After that we will undergo another series of test to ensure that the resistive touch on the LCD

screen works and that it is calibrated correctly. To start off with the power up sequence, we will

110

first provide the correct voltage and current to the correct pins and see if the resistive touch of the

LCD screen there is a tool created by Texas Instruments to calibrate any chosen screen. To use it,

one must download and run the open source code provide by Texas Instruments.

 Communication Testing - JG
To test Texas Instrument’s WiFi Hardware capabilities, we began by purchasing an MSP430F5529

Launchpad board and a CC3100 WiFi booster pack shield. We chose this hardware to start because

TI provides various tutorials online as part of its SimpleLink series. The hardware didn’t set up as

simple as the videos online made it seem. We found out that the CC31xxEMUBOOST board was

required in order to flash the SimpleLink SDK to the CC3100. The CC32xx series of boards would

have had the WiFi and emulator built in, but for our testing purposes, buying the emulator was

cheaper than getting the CC3220.

The MSP430F5529 features a variety of GPIO pins. With the WiFi booster pack shield attached,

we can still use most of the pins for our device inputs. To test analog input, we connected a HB-

SR04 Ultrasonic Sensor to pins 21-24. The HB-SR04 works by transmitting a signal and listening

to receive the signal when it bounces off an object. The time it takes to receive the signal

determines how far away the object is. After uploading code to configure the sensor, we were able

to output distance data to the COM terminal. The values looked accurate, so our board is reading

the analog input correctly. The Ultrasonic sensor works like the humidity and moisture sensors

that we want to use for our garden, so it serves as a good example even though we may not use it

in our final project.

Communication testing checklist:

• WiFi

o The device connects to a wireless access point.

o The device obtains an IP address from the access point.

o A webpage is created using the IP address given to the device.

• MQTT

o The device can send an MQTT message to the webpage.

o The device can receive an MQTT message posted by the webpage.

• Bluetooth

o The device can broadcast a Bluetooth signal to connect to.

o The device can transmit data over a Bluetooth connection.

o The device can receive information over a Bluetooth connection.

o

 Software Testing - JG
To understand how the project will work before we build it, we purchased development boards to

start implementing some of the features we have been researching. Building working software

takes persistence and practice, testing the methods we have researched about before building our

final product will make sure we are prepared for the project. Testing on development boards we

are familiar with makes comprehension of the new programs we are writing come easier. Each

step in the testing process will bring us closer to achieving a working prototype of our device.

111

 WiFi Testing - JG
Since our device will need to connect to the internet, we made it a priority to get software running

that enables us to communicate with the embedded controller online over local internet

connectivity. In Energia, we followed the Simple Wifi Server demo, found in the example files

that comes installed with the IDE. The only edit needed to get the code working is to change the

network SSID and password to be congruent with the network credentials we want to connect our

microcontroller with. After trial and error trying to connect to a home network, we realized that

security measures imposed by the internet service provider make this difficult. By connecting a

computer and embedded controller to a phone’s hotspot wireless network, we were able to get the

demo program working to where the launchpad’s LEDs could be controlled by going to a webpage

hosted by the MCU.

Figure 49: WiFi software block diagram

112

 Bluetooth Testing - JG
Helpful header files will ease the process of programming Bluetooth code. In Energia, we set up

communication with ble.begin(). The data comes through serial reads. The master Bluetooth node

will be set up as the access point. Serial communication is done over UART.

 MQTT Testing - JG
To send data over WiFi, we will want to use MQTT. This protocol requires a broker, which is a

third party server that routs published MQTT packets to their appropriate topics. Eclipse is an open

source IoT provider that we can set up an MQTT server on. To program our device to publish

MQTT messages, we can use the Pub/Sub client header in Energia. The Pub/Sub libraries allow

us to create a PubSubClient object and call a connect function to the channel we set up in Eclipse.

Once the connection is made, we call the subscribe function in the client object to subscribe to a

certain topic in the channel we are connected to. To send data, we simply call the client’s publish

function and define the topic we want to push data to, along with the message we would like to

send. The example demo on Energia sends a “hello, world” message, but an MQTT message can

also contain sensor data either as a character string or as a JSON formatted string. Sending our

information in JSON format will easily allow our MQTT message to be passed along to various

APIs.

 PubNub Testing -JG
We can also use PubNub as our MQTT broker and subscribe to the channel with widgets in

freeboard.io to monitor sensor readings. To test this out, we hooked up an MSP430F5529 with a

CC3100 Booster pack and attached an HCRS04 Ultrasonic sensor to give an analog reading. Our

smart garden probably won’t need a distance meter, but the analog reading we get from the sensor

mimics the readings we might get with the other sensors we will be using in our project. Setting

up a PubNub account is required to use their broker resource. After creating an account, we created

a new project and made a new channel and pub/sub keys. The channel name and keys will be

needed by our publisher, in this case our MSP430, so we define them as constants in the code. To

set up our MQTT test, we based our code off of the PubNubJsonWiFi example provided in Energia.

Library files for PubNub are included in the latest version of Energia and provide the functions

needed to begin a connection. To pass messages along, we create a JSON object since its structure

will be easy to parse by our dashboard in freeboard.io, and most other online applications. The

JSON message consists of our device name and the data we store from reading the sensor.

113

Figure 50: PubNub communication block diagram

After the appropriate set up is done, the main loop in the code establishes a WiFi connection,

creates a JSON message with the sensor data, converts that JSON to a string, then publishes the

stringified message to the PubNub channel we specified. The data can be viewed in the debug

terminal on PubNub to confirm it is sending. For other debug outputs, a serial output can be

referenced in the com terminal of Energia. WiFi will need to be either open or on a mobile hot spot

to connect, home internet routers will have security measures to block unsecure devices. Once the

data is on PubNub, we use freeboard.io to visualize the data. Freeboard allows us to create widgets

that subscribe to the messages we publish to the PubNub channel. For this example, we made a

distance sparkline that parsed our JSON message for the ultrasonic sensor analog reading shown

in this figure.

114

Figure 51: Creating a widget on Freeboard. JSON format makes accessing our sensor data easy.

Figure 52: Freeboard Dashboard. This is where we can visualize our data sent from the

microcontroller to PubNub using MQTT

 Bluetooth Testing - AL
In order to test out if our Bluetooth module is working correctly, we will use AT commands to

attempt to control it. From our Code Composer, we would be attempt to power the Bluetooth

module on the all of the modules one at time and see if at least a regular laptop/PC can pick the

device up. Some steps that we might take would be to connect a breakout board directly from the

module in testing to be connected to our PC via FTDI cable. We would could then download any

sort of application on our PC to be able to receive/send basic data to our HM-10 device, such as

BLE Scanner, LightBlue, nRF Toolbox App, etc. Once everything is hooked-up correctly we

should attempt to connect to the Bluetooth module on the application, the default name of this

device is “HM-10”. After that we would open either command line or any type of GUI that would

115

be able to send commands to the Bluetooth module and attempt to strings from our application to

our module and visa versa and see if we received them.

Once we get the hang of sending and receiving strings from our terminal, we would practice

sending AT commands to see the incoming response. Commands such as “AT+ADDR?” and

expect to see the native address, “AT+SLEEP” to set the device in sleep mode and to wake the

device up, send a large string, etc.

Figure 53: Example Bluetooth Test Sequence

 Prototype - MM
In order to verify that the design of the SmartLeaf system is sound prior to installation within the

greenhouse enclosure, a prototype of the entire system is to be built and tested. This will provide

an opportunity to test the power and controls circuitry for the system prior to finalizing the design

of the printed circuit board. Additionally, the compatibility of the various environmental control

systems can be modified to create the ideal maintenance routines. The construction and testing of

the prototype will need to be conducted in a lab setting with the proper equipment needed to

116

troubleshoot and verify that the voltage and current characteristics are in the range of their

simulated values. Equipment available in the Senior Design and TI Innovation labs should be

sufficient for testing. The following data shown in Table 25 below outlines the equipment needed

for testing and provides a justification for their inclusion.

Table 25- Prototype Testing Equipment

Equipment Justification

Digital Multimeter Used to verify voltage and current characteristics; troubleshooting

Oscilloscope
Used to measure ripple voltage and transient responses; identify

interference issues; troubleshooting

DC Power Supply Used for device isolation; troubleshooting

Variable

Potentiometer
Used for device isolation; troubleshooting

 Prototype Planned Pin Layout -AL
In the case of repairing any of the peripheral devices connected to the microcontrollers, attempting

to add additional sensors, or troubleshooting any problems that were to arise in the future, this

section serves as a guideline to how we initially wired up everything to the microcontrollers and

the pins that they used.

 Parent Microcontroller - AL
As we are using a MSP432 as the chip to control our main systems, there were a variety of types

of data to send. The whole MSP432 device itself has four 16-bit timers with PWM, two 32-bit

times a RTC, up to eight serial communication channels (I2C, SPI, UART, and IrDA) so we had

to be careful to not hook up the wrong port to a device that needs another type of signal. The 40-

pin layout found in its datasheet shows what signals can be configured on each pin on the MSP432,

while Table 29: MSP432 Breakout Pin Selection shows the signals we needed from the device and

how we utilized the MSP432 to satisfy them.

There were many pins on the actual MSP432 that were not used though within the 40-pin breakout

provided from the breakout board, the shared signals can be shown on Table 29: MSP432 Breakout

Pin Selection.

 Child Microcontroller - AL
As the same as section Parent Microcontroller - AL, this section is to describe the how we are

utilizing a MSP432 as the chip to control our main systems, there were a variety of types of data

117

to send. The whole MSP430 device itself has two general-purpose digital I/O pins connected to

LEDs, two push button, a high-quality 20-pin DIP socket for an easy plug-in to the target device.

The different signals the specific MSP430G2553 has a 17-bit MSP430 microcontroller with an 8-

channel 10-bit ADC, on-chip comparator, 16kB flash memory and 512 bytes of RAM we had to

be careful to not hook up the wrong port to a device that needs another type of signal. The 20-pin

layout shows how the 20-pin breakout is configured on the shows the signals we needed from the

device and how we utilized the MSP430 to satisfy them.

11.0 Greenhouse Construction - MM
This section serves to detail the physical design and construction of the indoor greenhouse system.

Additionally, the orientation and mechanics of the sensors and various control systems will be

outlined. The concept and basis of design can be seen in Figure 54 and Figure 55 below.

Figure 54- Front and back view

118

Figure 55- Side views

 Placement and Mechanics of Environmental Controls - MM
Four main controls systems will be used to regulate the environmental conditions within the

greenhouse. These systems provide light, water, humidity, and airflow to the plants on a cyclical

schedule or interrupt-procedure triggered by sensor readings. All hardware within the visibly

exposed upper portion of the unit will have to be cleverly disguised as to not detract from the

interior vegetation.

 LED Placement - MM
The LED strip lights will be affixed to the roof of the unit in three strips, concealed from the clear

acrylic paneling with 2” ornamental strips. Due to the density on LEDs on each strip, this will

provide more than enough light coverage and energy provided to the plants when operating at

maximum power supplied from the respective switching regulator. For added convenience, the

roof will have a latch that the user can prop up perpendicular to the floor, which will provide

additional access and air circulation to the plants below. The design decision adds some

complication to the LED placement, as the wires supplying the strips are subject to wear from

making the nearly 15° movement. Enough slack in the wire and a potential shifting mechanism is

to be utilized to protect the circuitry.

119

 Watering Mechanism - MM
The system will employ a 12V brushless submersible pump to deliver water from the cabinet

enclosure in the base to the two main plant beds based on soil moisture readings from the sensors.

Vinyl tubing connected to the pump will be wrapped around the periphery of the plant beds with

small slits in this area to allow water to escape into the soil. Testing done during the prototyping

stage will determine the correct power level to deliver water to plants in a laminar manner and

without excessive vibration and noise. This will be accomplished via pulse width modulation. In

Figure 56 below, the general mechanism for delivering the water to the various plant beds is shown.

Figure 56- Watering mechanism demonstration

 Fan Placement - MM
The two fans are to be positioned in a way that encourages the circulation of outside air into the

upper greenhouse enclosure. Located at a central position on the sides, the fans will be oriented

identically – not mirrored – as to pull in and push out the air. This design will ideally provide the

plants with enough carbon dioxide for photosynthesis, effectively lower the temperature and/or

humidity when needed, and maintain an equilibrium pressure within the unit. The top enclosure of

the unit it to be as watertight as the various connections from the bottom will allow to protect the

parent printed circuit board and other external components located in the cabinet from water

damage. Powerful fans could potentially create some non-ideal pressure conditions, but that likely

will not be the case in our unit; regardless, pressure-related issues should at least be considered as

a possibility. This orientation should discourage the issue. Care should be taken into the

programming for fan speed as to not damage any plant foliage or fruit.

120

 Humidifier Placement - MM
The humidifier is to be placed within the upper greenhouse enclosure to provide air moisture and

cooling to the plants within the unit. Due to a general lack of options for devices of this kind, the

humidifier selected requires some further assembly to get it in a practical working condition. The

water-atomizing disk cannot be placed below water level, but the device itself is only a few

millimeters tall. Operating the device in this manner would require constant replenishing of its

water source, and overall, would be highly impractical. In order to deliver water to the device

without exceeding past its sides, the device can be placed on sponge sitting in a pool of water.

While this would lessen the frequency of its water being refilled, it would still need to be

replenished more than in desired, not to mention the possibility for bacterial growth that could

occur within the sponge. Another option would be to have a cup-like basin for the humidifier water

and a small bit of flexible tubing placed inside the cup, like a straw. The top of the straw would be

tightly sealed to the bottom of the condenser disk. The disk provides a minor pressure differential

that, within the small volume of the straw, will be enough to pull the water up to the top, to then

be diffused into the air. This method is the soundest for the SmartLeaf system, as it requires

infrequent water fillings, and is overall more sanitary. The image shown in Figure 57 shows this

mechanism in action. To maintain a clean look, the ‘cup’ will be placed in the corner of the unit,

and outfitted in a color scheme that will allow the mechanism to be easily concealed by the foliage.

Figure 57- Basis of design for the humidifier. Permissions requested from IC Station

 Final Planned Pin Layout - AL
In the case of repairing any of the peripheral devices connected to the microcontrollers, attempting

to add additional sensors, or troubleshooting any problems that were to arise in the future, this

section serves as a guideline to how we initially wired up everything to the microcontrollers and

the pins that they used.

121

 Parent Microcontroller - AL
This section is to serve as an easy pin map to show which pins we used on the MSP432 on our

parent microcontroller. As we are using a MSP432 as the chip to control our main systems, there

are many pins that aren’t used in the MSP-EXP432P401R LaunchPad development kit, this goes

inform that some of the connections TX-RX lines in the Bluetooth module and Wi-Fi modules are

being used toward the the same pins because the MSP432 only has two sets of TX-RX lines that

one of the sets are used for the LCD screen. The final planned pinouts for the parent

microcontroller will be explained in Table 29: MSP432 Breakout Pin Selection.

 Children Microcontrollers - AL
This section is to serve as an easy pin map to show which pins we used on the MSP430 on our

child microcontroller. The peripheral devices connected to this were the CC2541 Bluetooth

Module, the LM393 Soil Moisture and the Ezo-pH Sensor for measuring out the status of the plants

they were to oversee and send the data back through the Bluetooth module to the part

microcontroller. The only addition we decided to incorporate was a temperature/humidity sensor

to one of the child microcontroller as to be able to take the measurement of the whole enclosure.

The final planned pinouts for the children microcontroller should be the same as explained in Table

30: MSP430 Breakout Pin Selection.

 GUI User Guide - AL
To have a local interface with the controller and all its peripheral devices we will plan to have a

GUI in the front of the Smart Tabletop Greenhouse. This will serve as a local interface for a user

to be able to access and control all the environment changes in our greenhouse, look at data

provided from sensors, and provide a troubleshooting system that will notify the owner if anything

is out of the ordinary for the greenhouse.

To do this we plan on using an application on Code Composer Studio, as we plan to have our

controller be from Texas Instruments. In addition to the GUI Composer application being the main

complier for TI components, there are also features in this application to be able to easily access

and show data through the chip via graphs along with numbers and words. There are even objects

within the application that simulate thermometers to make ease of custom event handling as our

data is pre-processed. For our error messages, the composer application has features where pop-

up windows can be created just as if on a regular PC to notify its users.

122

Figure 58: GUI Block Diagram

123

To describe the series of events happening in the block diagram above, the main sequences of the

GUI will work as follows:

 Home Page -AL
The main page will have a fun, engaging picture video with all of the creators’ names on it on the

left half of the screen. The other half of the screen will have four individual clickable box options

which will be take you either to the sensor page, the LED show page, the environment changer

page, or the Cloud page. Once clicked the LCD board will take no longer than 0.5 seconds to load

the page from the local memory. With the TI GUI composer, these functions should be easy to

implement.

The only thing we have to be prepared for when implementing a GUI from TI GUI Composer is

the fact that we have to send off the correct information though the Wi-Fi module to be able to be

viewed onto the LCD as well. We will ensure that the GUI is working correctly on the Cloud first

to eliminate that the miscommunication errors shown are caused by the GUI were to come locally

from the MSP432 to the LCD screen. If errors were to occur on the LCD screen after the

verification that the GUI works without the screen we would assume there would be an error of

data transfer between the MSP432 and LCD screen.

Figure 59: Example Home Page

124

 Sensor Pages -AL
Starting with the sensor section of the flowchart, if clicked from the home page, will take you to a

preemptive page with all the currently paired devices to the main ARM processor. The page will

be consisted of eight buttons, all of which will contain text that will show the name of the plant a

peripheral device will monitor. Each currently paired device will have its own green button and

there will a maximum of eight separate devices to represent each plant in the system. If there are

less than eight devices paired to the main ARM processor, the extra buttons will be colored red

and have text that says “PAIR ME!”. There will be a return home button in the upper right-hand

corner of the page also that will take the user to the home page if clicked.

Cases that one would have to be careful on this page would be if you were to click on a green box

leading to the sensor of a paired plant yet coming up to a blank page, if you were to click on a red

box and to be directed to a known plant page, or if you clicked on a unknown page and were not

sent to the sensor connector page. If this is to occur, look back within the GUI code itself and look

at the functions controlling these boxes and check back if of the syntax/pinouts are not matching

those on the schematic.

Figure 60: Example Sensor Home Page

125

11.3.2.1 Connected Plant Page -AL
If the user decides to click on a currently connected plant, it will take the user to another page

which will show all the sensors that are connected to that microcontroller, the data that those

sensors are gathering and if any of the sensors connected are functioning incorrectly. Some boxes

that will be on the page would be for, pH level vs what is should be, last time the plant was water

vs how often it should be watered, how much longer until the plant should be at the ripest yield

and if the temperature and humidity is what it should be for the specific plant to grow optimally.

If any of the observations from the sensors does not line up to the inputted information, the box

fill be colored in yellow, if the sensor itself is not working the box will be filled red, and if

everything is up to the optimal region the box will be colored green. Up on the upper right-hand

corner will be options to head back to the main sensor page or the main home page.

Cases that we have to be careful on this page would be if there the boxes in green are not matching

within the error range we have for the specific measurement; i.e optimal pH level: 6.00, current

pH level: 10.11; if the boxes in yellow are within the error range but are not green; ideal

humidy:55%, current humidity: 55%; or if the box is red but are getting reading from the actual

sensor. If this is to occur, look back within the GUI code itself and look at the functions controlling

these boxes and check back if of the syntax/pinouts are not matching those on the schematic.

Figure 61: Example Connected Plant Page

126

11.3.2.2 Pairing New Plant Page -AL
Going back to the sensor home page, if the user instead pushes the “PAIR ME!” option, the user

will be directed to a blank sensor page in which the user can input the name of the plant to be

inserted in the system, what it’s optimal pH level should be, how often the plant would need to be

watered, about how long the plant will take until it should be fully grown, the ideal humidity and

ideal temperature that the plant needs to be grown optimally.

The required variable types for each field will be as follows; name of plant will be of type string,

optimal pH level will be of type double, ideal temperature will be of type double, ideal humidity

will be of type double, and the optimal water schedule will initially be of type char to be casted to

type int later. If any of the fields inputted by the user are of the incorrect data type, the GUI will

spit out an error text box the says “****** IS FILLED INCORRECTLY!!!”. Will also include two

buttons to return with the sensor page and the main home page in the upper right-hand corner.

Cases that one would have to be careful on this page would be if you were to enter the correct

information in all of the fields but still getting the error message, entering all correct information

and not having the planted added on the Plant Sensor Page, and entering an incorrect data type in

the field but still being able to create a new plant. If this is to occur, look back within the GUI code

itself and look at the functions controlling these boxes and check back if of the syntax/pinouts are

not matching those on the schematic.

Figure 62: Example Plant Insertion Page

127

 LED Page -AL
With the LED light show section of the flowchart, the user will have the option to change the light

settings of the LEDs in and around the enclosure. This page will be split into two sides, the left

half of the page giving options on what LED patterns that are programmed to the outside of the

enclosure; either having a flowing rainbow pattern, random rainbow patterns, flashing rainbow

patterns, and much more. On the right half of the page, eight spots will be given to represent the

possible plants that could be put in the enclosure to provide for the plants, these can mimic the

amount of sunlight that the specific plant will need for optimal growth in each day. The user can

manually manipulate the level of light that is emitted for its specified LED section, and can be

adjusted to change the amount of power heading to the section in percentage. Will also include a

button to return to the main home page in the upper right-hand corner.

Cases that one would have to be careful on this page would be if you were to change any of the

LED options and having no difference in the LEDs after one complete cycle of the previous

sequence or nothing were to occur at a max of 10 seconds. If this is to occur, look back within the

GUI code itself and look at the functions controlling these boxes and check back if of the

syntax/pinouts are not matching those on the schematic.

Figure 63: Example LED Show Page

128

 Environment Changer Page -AL
With the Environment Changer section of the flowchart, the user will be directed to a page the has

multiple boxes in where they can change the elements that would change the living conditions of

the plants inside of the enclosure. There will a box to adjust the temperature, the humidity, eight

boxes to manually water the plants if the user feels like the schedule initially entered for the plant

is not enough. Same with the individual sensor errors, if any of the environmental changers are

working not to what the user set it to within a hysteresis the box will become yellow, if the ARM

processer is not getting a signal at all from the environment changer in question the box will be

filled in red. Will also include a button to return to the main home page in the upper right-hand

corner of the page.

Cases that one would have to be careful on this page would be if you were to change any of the

environment changes and having no difference in the environment changer at max of 10 second,

if there is a green box where there is no plant attached in that spot, if the one of the environment

boxes is yellow yet none of the environment changers are adjusting the enclosure up to a max of

10 seconds. If this is to occur, look back within the GUI code itself and look at the functions

controlling these boxes and check back if of the syntax/pinouts are not matching those on the

schematic.

Figure 64: Example Environment Changers Page

129

 Cloud Page -AL
With the Cloud section of the flowchart, the user will have an option to manually upload or

schedule a time to upload information up and download from the cloud. This page will feature a

scheduler showing when the last time information has been uploaded to the cloud and when the

next schedule time will be, another scheduler showing when the last time information was

download from the cloud and when the next scheduled time will be, and a two separate buttons for

the user to manually upload information from the cloud and download information from the cloud.

If any of these process are to go in error, the respective box will be filled in red and a notification

will show up inside the box.

With the buttons provided, the code to be able to actually send the data to the cloud might be more

difficult than initially expected. This is because if we aren’t able to correctly implement the GUI

to communicate to the website in the way that we need it to, either the data being sent to the Cloud

will be incorrect and stores broken data, or visa versa. One thing that we will have to be cautious

of will be getting the correct time stamp while transferring data back and forth. This will ensure

that the data we are attempting to send off goes through the correct handshaking procedure.

Figure 65: Example Cloud Page

130

 Project Operation & User’s Guide - MM
The SmartLeaf indoor greenhouse system – initially without soil and plants – is to be placed in

front of a 120V general-purpose receptacle to discretely plug in the device. Before this occurs, the

user is to insert soil into the main and peripheral plant beds. This greenhouse system is able to

support both plants that have already taken root and seeds for germination. Plants with roots

systems exceeding 10” are not ideal for this system. Root systems of 6” or more in length should

be placed into the main plant bed. Once the plants are arranged to the user’s liking, the soil moisture

and pH sensor probes should be placed at least 1” into the soil for both the main plant bed and the

vertically oriented peripheral bed, as close to being centered as possible, and adjusting the plants

and foliage to conceal the sensor to the user’s best ability. With time, more foliage should grow in

and conceal unsightly wires.

After the soil, plants, and sensors have been placed, water can be accounted for. Within the bottom

cabinet, three water tanks can be seen- two for fresh water to be delivered to the plants, and one to

collect the drainage. To fill the fresh-water tanks, unscrew the top cap, and add distilled water with

a watering pot or pitcher. The water level should not exceed the maximum fill line for either tank.

When powered on, the system will alert the user when the fresh-water tanks are low, and when the

drainage tank is approaching maximum capacity. To empty the drainage tank, simply detach the

top tubing, remove the tank from the cabinet, and empty into the nearest sink. Reusing the drainage

water within the SmartLeaf system is not encouraged, as any dirt or particles from the soil could

potentially damage the pumps. The final water source that needs to be addressed is for the

humidifier, located in the upper enclosure. Simply fill water to the maximum capacity indicated

and ensure the tubing and diffuser disk is returned to its original position within the cup.

At this point, the system is ready to be plugged in. The user should see the LCD display boot and

display the welcome screen. Once this occurs, the user will be able to select or modify a routine

for the environmental controls of the greenhouse, add a cellphone number for text notifications,

and gain instructions for accessing the web app. After this is setup, the user can select back to the

home screen, and the environmental conditions within the unit will be displayed.

12.0 Project Administration - MM
Administrative aspects of this project include finances, team designations, and planning for future

milestones and deadlines. The following sections were utilized to keep the project on budget and

delivered on schedule. It is important for these plans to be discussed with the design team fully

and deeply prior to the commencement of planning and purchases. The following budget and

milestones presented in this section have been understood and agreed upon at the start of this

project.

 Budget - MM
The following chart outlines the component cost for the entire greenhouse system. It should be

noted that this cost analysis is an estimation as not all components have been purchased and prices

may fluctuate at a later date. Additional costs due to unforeseen circumstances could possibly arise

and put more financial strain on the project; design prototypes are to be built and device testing is

to be conducted to mitigate and prevent financial loss whenever possible.

131

While the electronic components have been specified and discussed at length in this document,

materials such as building and gardening materials cannot be fully specified at this time and a

rough estimate is presented in excess of the expected cost for these items to err on the side of

caution and give a more realistic budget for this project.

Table 26- Budget

Item Quantity Price
Total

Price

Acrylic panels 6 $7 $42

Miscellaneous

hardware & materials
- $100 $100

Water tank 2 $5 $10

Tubing 1 $13 $13

Water pump 2 $8 $16

Plants & soil - $20 $20

LED strip lights 1 $14 $14

Power supply &

voltage regulators
- $40 $40

PCB 1 $60 $60

WIFI modules 3 $10 $30

Microcontroller 1 $13 $13

Humidity/temperature

sensor
1 $9 $9

Soil moisture sensor 2 $13 $26

Soil pH sensor 1 $30 $30

Water level sensor 2 $4 $8

Humidifier 1 $7 $7

LCD display for GUI 1 $30 $30

Ventilation fan 2 $4 $8

 Total: $476

132

 Milestones

 Senior Design 1 Milestones -AL
The following chart is used as a means of staying on target to the deliverable dates. The final

outcome of this course is to turn in final project documentation, start general prototype testing, and

place initial orders for major components of the system.

Table 27- Senior Design 1 Milestones

Week Date Event

3 May 28 Divide and Conquer 1

4 Jun 4 Research

5 Jun 13 Begin writing document

8 Jul 7 At least half of writing is complete

11 Jul 21 75% of the writing is complete

12 Jul 30 Format and print final paper

13 Aug 2 Turn in completed document

 Senior Design 2 Milestones -AL
The chart below serves as an expected timeline for the following course in Fall 2019. During this

semester, the greenhouse will be assembled and demonstrated to peers, professors, and industry

professionals.

Table 28- Senior Design 2 Milestones

Week Date Event

1 Aug 26 Order parts

4 Sep 17 Assemble PCB

6 Oct 2 Have completed code

7 Oct 9 Build project

13 Nov 20 Test/finish project

15 Dec 4 Prepare presentation

16 Dec 11 Final presentation

133

13.0 Final Comments - MM
This section serves to provide final comments after the design stage of this project has been

completed, keeping goals for the following semester in mind, and noting areas for possible growth

and expansion prior to the delivery of the finished product.

 Future Goals - MM
With the commencement of the following semester rapidly approaching, the SmartLeaf team will

be transitioning from the design phase to the prototype and construction phase. With the full bill

of materials documented, the next step is to start purchasing components, building the prototype

circuitry, and developing programs to integrate the design vision as a fully realized system.

Additional time between the summer and fall semester will be devoted to finalizing a design for

the printed circuit board. Areas that are relevant to the structural integrity and aesthetic design of

the unit need to be further researched as it lies outside the team’s realm of expertise. Advice and

guidance from friends, family, and coworkers will likely be needed. With access to power tools at

home and at the TI Innovation lab, progress on the frame has already begun.

 Potential Areas of Expansion - MM
In the future, granted extra time and a surplus in the budget were found, the current plans for the

SmartLeaf system could be expanded upon. A fully functional iOS/Android app could be

implemented in addition to the standard webpage and text notifications already accounted for. This

could potentially spark consumer interest and fall more in-line with comparable units available on

the market today.

A more practical area of potential expansion for the SmartLeaf system would be to make the unit

more appealing for viewers during the daytime. It is already within our means to schedule the red-

blue wavelength light periods during the night as to not detract from the organic appearance of the

unit and plant life within. In addition to this, a daytime routine of tunable white light could be

implemented, spectrally removing the blue wavelengths as the day fades to the afternoon and night.

The LEDs are not spectrally balanced enough when producing white light for this to affect the

photosynthesis cycle of the plants, but the human eye would be benefited. Tunable color

temperature and circadian lighting is becoming more commonplace in the engineering world, and

adapting this cycle within our unit would provide additional visual interest.

 Conclusion - MM
Throughout this paper, research, constraints, applicable standards, component specification, and

overall design were detailed and documented for the SmartLeaf indoor greenhouse system. With

the initial design completed, the team can now plan for the following term. Next steps include

placing orders for components, building prototype circuitry and systems, developing programs and

scripts, and commencing the physical construction of the unit.

134

14.0 Appendices

 Permissions

 Niwa One Request for Permission

 Science ABC Request for Permission

135

 IC Station Request for Permission

 NEMA Enclosures Request for Permission

 Renesas Electronics Request for Permission

136

 NEMA Request for Permission

 User Pin Layout

 Parent controller - AL
Table 29: MSP432 Breakout Pin Selection

Device Signal Type Needed MSP432 Pin MSP432 Pin
Peripheral Device

Pin

TFT LCD

screen
5V Vcc J3.1 73 3-5V

TFT LCD

screen
GND J3.2 72 GND

TFT LCD

screen
SPI_CLK J1.7 (P1.5) 11 CLK

TFT LCD

screen
MOSI J2.10 (P3.6) 38 MOSI

TFT LCD

screen
MISO J4.10 (P3.7) 39 MISO

TFT LCD

screen
GPIO J4.9 (P3.5) 37 CS

TFT LCD

screen
GPIO J1.8 (P4.6) 62 D/C

TFT LCD

screen
Analog J3.3 (P6.1) 55 -Y

TFT LCD

screen
Analog J3.4 (P4.0) 56 +X

137

Device Signal Type Needed MSP432 Pin MSP432 Pin
Peripheral Device

Pin

TFT LCD

screen
Digital J2.4 (P5.7) 26 +Y

TFT LCD

screen
Digital J2.8 (P5.0) 64 -X

Fan 1 PWM J4.1 (P2.7) 23 Data

Fan 2 PWM J4.2 (P2.6) 22 Data

Humidifier PWM J4.3 (P2.4) 24 Data

LEDs GPIO J1.5 (P4.1) 57 Data

Water Sensor GPIO J2.10 (P3.6) 4 Signal

Bluetooth

Module
+3.3V J1.1 13 +3.3V

Bluetooth

Module
UART_TX J1.3 (P3.2) 34 UART_TX_1

Bluetooth

Module
UART_RX J1.4 (P3.3) 35 UART_RX_1

Bluetooth

Module
+5V J3.1 NA +5V

Bluetooth

Module
GND J3.2 72 GND

Bluetooth

Module
Analog In J3.7 (P4.5) 61 AUD_FSYNC

Bluetooth

Module
Analog In J3.8 (P4.7) 63 AUD_CLK

Bluetooth

Module
Analog In J3.9 (P5.4) 68 AUD_DOUTIN

Bluetooth

Module
Analog In J3.10 (P5.5) 69 AUD_DINOUT

Bluetooth

Module
GND J2.1 15 GND

Bluetooth

Module
RST J2.5 83 RST

138

Device Signal Type Needed MSP432 Pin MSP432 Pin
Peripheral Device

Pin

Bluetooth

Module
UART_CTS_1 J4.4 (P6.6) 80 UART_CTS_1

Bluetooth

Module
UART_RTS_1 J4.5 (P6.7) 81 UART_RTS_1

Wi-Fi Module +3.3V J1.1 13 Vcc (3.3V)

Wi-Fi Module UART1_TX J1.3 (P3.2) 18 UART1_TX

Wi-Fi Module UART1_RX J1.4 (P3.3) 19 UART1_RX

Wi-Fi Module SPI_CLK J1.7 (P1.5) 9 SPI_CLK

Wi-Fi Module GND J2.1 72 GND

Wi-Fi Module PWM J2.2 (P2.5) 21 IRQ

Wi-Fi Module SPI CS J2.3 (P3.0) 32 SPI_CS

Wi-Fi Module SPI MOSI J2.6 (P1.6) 10 SPI_MOSI

Wi-Fi Module SPI MISO J2.7 (P1.7) 11 SPI_MOSI

Wi-Fi Module +5V J3.1 NA +5V

Wi-Fi Module GND J3.2 82 GND

Wi-Fi Module UART1_CTS J4.4 (P5.6) 70 UART1_CTS

Wi-Fi Module UART1_RTS J4.5 (P6.6) 80 UART1_RTS

Wi-Fi Module UCA1TXD J4.7 (P2.3) 19 NWP_LOG_TX

Wi-Fi Module Analog In J4.8 (P5.1) 65 WLAN_LOG_TX

139

 Child Controller - AL
Table 30: MSP430 Breakout Pin Selection

Device
Signal Type

Needed

MSP430

Pin

MSP430

Pin
Peripheral Device Pin

Bluetooth Module +3.3V J1.1 1 Vcc

Bluetooth Module GND J2.1 14 GND

Bluetooth Module UART
J1.3

(P1.1)
3 TXD

Bluetooth Module UART
J1.4

(P1.2)
4 RXD

Temperature/Humidity

Sensor
+3.3V J1.1 1 Vcc

Temperature/Humidity

Sensor
GPIO

J1.5

(P1.3)
8 Data

Temperature/Humidity

Sensor
GND

J1.6

(P1.4)
20 GND

pH Sensor +3.3V J1.1 1 +3.3V

pH Sensor GPIO
J1.7

(P1.5)
9 Data

pH Sensor GND J2.1 20 GND

Soil Moisture Sensor +3.3V J1.1 1 +3.3V

Soil Moisture Sensor GPIO
J2.6

(P1.7)
10 Data

Soil Moisture Sensor GND J2.1 20 GND

140

15.0 Works Cited

[1] B. &. J. A. &. B. K. C. Wolverton, "Interior Landscape Plants for Indoor Air Pollution

Abatement," 1989.

[2] M.-S. Lee, "Interaction with indoor plants may reduce psychological and physiological stress

by suppressing autonomic nervous system activity in young adults: a randomized crossover

study.," Journal of Physiological Anthropology, vol. 34, 2015.

[3] OSHA, "Materials Handling: Heavy Lifting," Occupational Safety & Health Administration,

Washington D.C., 2019.

[4] AcuRite, "Acurite," 6 April 2018. [Online]. Available:

https://www.acurite.com/blog/planting-uv-recommendations-and-tips.html. [Accessed 29

June 2019].

[5] Worldsemi, "Adafruit," [Online]. Available: https://cdn-

shop.adafruit.com/datasheets/WS2812B.pdf. [Accessed 30 July 2019].

[6] R. Benckiser, "Why Plants Need Nutrients," The Royal Society of Chemistry, London, 2019.

[7] K. LaLiberte, "When is it Warm Enough to Plant?," Gardener's Supply, 2019. [Online].

Available: https://www.gardeners.com/how-to/when-is-it-warm-enough-to-plant/9029.html.

[Accessed 06 July 2019].

[8] Wikipedia, "Relative humidity," Wikipedia, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Relative_humidity. [Accessed 06 July 2019].

[9] J. HENDERSON, "thekitchn," 11 July 2015. [Online]. Available:

https://www.thekitchn.com/everything-you-need-to-know-about-growing-basil-221272.

[10] J. F. K. I. V. K. D. Erickson, "Plant Automated Sustainable System (PASS)," UCF Senior

Design, Orlando, 2013.

[11] AcuRite, "AcuRite," 2018. [Online]. Available: https://www.acurite.com/blog/soil-ph-

recommendations-and-tips-for-fruits-vegetables-trees-shrubs.html. [Accessed 2019].

[12] AcuRite, 2018. [Online]. Available: https://www.acurite.com/blog/soil-moisture-guide-for-

plants-and-vegetables.html. [Accessed 2019].

[13] Adafruit, "DHT22 temperature-humidity sensor + extras," Adafruit, 2019. [Online].

Available: https://www.adafruit.com/product/385. [Accessed 4 July 2019].

[14] Emartee, "High Sensitivity Water Sensor -Red Version," Emartee, 2019. [Online]. Available:

https://www.emartee.com/product/42285/High%20Sensitivit%E2%80%8By%20Water%20

Sensor%20%20Red%20Version. [Accessed 3 July 2019].

[15] Smart-Prototyping, "SOIL MOISTURE SENSOR," Smart Prototyping, 2019. [Online].

Available: https://www.smart-prototyping.com/Soil-Hygrometer-Detection-Module-Soil-

Moisture-Sensor-For-Arduino.html. [Accessed 1 July 2019].

141

[16] A. Scientific, "Ezo-pH Datasheet V5.1," 2019. [Online]. Available:

https://cdn.sparkfun.com/assets/2/2/5/8/6/pH_EZO_Datasheet_v51.pdf. [Accessed 2019].

[17] T. Intruments, "MSP432P401x SimpleLink™ Mixed-Signal Microcontrollers Datasheet,"

June 2019. [Online]. Available: http://www.ti.com/lit/ds/symlink/msp432p401r.pdf.

[Accessed July 2019].

[18] M. Currey, "HM-10 Bluetooth 4 BLE Modules," martyncurrey.com, 5 January 2017. [Online].

Available: http://www.martyncurrey.com/hm-10-bluetooth-4ble-modules/. [Accessed 31 July

2019].

[19] GreatScott!, "Bluetooth 2.0 VS Bluetooth 4.0 (BLE) || Is an Upgrade worth it?," 25 March

2018. [Online]. Available: https://www.youtube.com/watch?v=1i-6cz4KHXE. [Accessed 31

July 2019].

[20] J. Lindh, "E2E support forums: Sleep & Wake-up on CC2541," Texas Instruments, 9

December 2012. [Online]. Available: http://e2e.ti.com/support/wireless-

connectivity/bluetooth/f/538/t/232324?Sleep-Wake-up-on-CC2541. [Accessed 31 July

2019].

[21] PubNub, "Publish/Subscribe Getting Started Guide," PubNub, [Online]. Available:

https://www.pubnub.com/docs/getting-started-guides/pubnub-publish-subscribe. [Accessed

July 2019].

[22] AdrianFerTi, "AdrianFerTi," [Online]. Available:

https://www.youtube.com/user/AdrianFerTI/videos. [Accessed July 2019].

[23] Amazon, "Getting Started with the Texas Instruments CC3220SF-LAUNCHXL," Amazon,

[Online]. Available:

https://docs.aws.amazon.com/freertos/latest/userguide/getting_started_ti.html. [Accessed

July 2019].

[24] J. Skansholm, "Vägen till C [The road to C]," Studentlitteratur, 1987.

[25] S. Cass, "IEEE Spectrum," 2018. [Online]. Available: https://spectrum.ieee.org/at-

work/innovation/the-2018-top-programming-languages.

[26] T. Instruments, "Simplelink WiFi-MQTT," Texas Instruments, [Online]. Available:

http://dev.ti.com/tirex/content/simplelink_academy_cc32xxsdk_1_14_02_04/modules/wifi_

mqtt/wifi_mqtt.html. [Accessed July 2019].

[27] T. Instruments, "TI-RTOS: Real-Time Operating System (RTOS) for Microcontrollers

(MCU)," Texas Instruments, [Online]. Available: http://www.ti.com/tool/TI-RTOS-MCU.

[Accessed June 2019].

[28] Amazon, "Amazon FreeRTOS," Amazon, [Online]. Available:

https://aws.amazon.com/freertos/. [Accessed June 2019].

[29] Amazon, "AWS IoT," Amazon, [Online]. Available: https://aws.amazon.com/iot/. [Accessed

June 2019].

142

[30] Dimension Engineering, "A Beginner's Guide to Switching Regulators," Dimension

Engineering, 2017. [Online]. Available:

https://www.dimensionengineering.com/info/switching-regulators. [Accessed 16 July 2019].

[31] C. Humphrey, "Building codes and greenhouses," Greenhouse Management, 26 July 2010.

[Online]. Available: https://www.greenhousemag.com/article/gmpro-0710-building-codes-

greenhouses-state-of-industry/. [Accessed 27 June 2019].

[32] John, "PCB Trace-The Importance of PCB Traces In the PCBs," OurPCB, 15 November 2018.

[Online]. Available: https://www.ourpcb.com/pcb-trace.html. [Accessed 2 July 2019].

[33] D. Marrakchi, "Top 5 PCB Design Guidelines Every PCB Designer Needs to Know," 30

November 2016. [Online]. Available: https://resources.altium.com/pcb-design-blog/top-pcb-

design-guidelines-every-pcb-designer-needs-to-know.

[34] Eessentra, "How to prevent your PCB from overheating," Eessentra, 2018. [Online].

Available: https://www.essentracomponents.com/en-gb/news/guides/how-to-prevent-your-

pcb-from-overheating. [Accessed 7 July 2019].

[35] A. Sherman, "Crash Course in Consumer Electronics Certifications: FCC Regulations, EMC

Testing, and More," Fictiv, 2019. [Online]. Available:

https://www.fictiv.com/hwg/plan/crash-course-in-consumer-electronics-certifications-fcc-

regulations-emc-testing-and-more. [Accessed 07 July 2019].

[36] Wikipedia, "IP Code," Wikipedia, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/IP_Code#Ingress_Protection_for_consumer_electronics.

[Accessed 07 July 2019].

[37] IEEE Electron Devices Society, "IEEE Standard for Sensor Performance Parameter

Definitions," IEEE Standards Association, New York City, 2014.

[38] Texas Instruments Inc., "TPS55330 Integrated 5-A, 24-V Boost/SEPIC/Flyback DC-DC

Regulator," Texas Instruments Inc., Dallas, TX, 2019.

[39] Texas Instruments Inc., "LMR62014 SIMPLE SWITCHER® 20Vout, 1.4A Step-Up Voltage

Regulator in SOT-23," Texas Instruments Inc., Dallas, TX, 2013.

[40] Texas Instruments Inc., "TPS56637 4.5-V to 28-V Input, 6-A Synchronous Buck Converter,"

Texas Instruments Inc., Dallas, TX, 2018.

[41] Texas Instruments Inc., "TPS560430 SIMPLE SWITCHER® 4-V to 36-V, 600-mA

Synchronous Step-Down Converter," Texas Instruments Inc., Dallas, TX, 2018.

[42] Texas Instruments Inc., "TPS6217x 28-V, 0.5-A Step-Down Converter With Sleep Mode,"

Texas Instruments Inc., Dallas, TX, 2015.

[43] En.wikipedia.org, "Photosynthesis," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Photosynthesis. [Accessed 7 July 2019].

143

[44] C. Speake, "Shade Tolerant Vegetables vs Sun Friendly Veggies," The Gardening Cook,

2019. [Online]. Available: https://thegardeningcook.com/sun-or-shade/. [Accessed 6 July

2019].

[45] Ashish, "Why Does Over-Watering Kill Plants?," Science ABC, 2019. [Online]. Available:

https://www.scienceabc.com/nature/why-does-over-watering-kill-plants.html. [Accessed 06

July 2019].

[46] Wikipedia, "NEMA connector," Wikipedia, 2019. [Online]. Available:

https://en.wikipedia.org/wiki/NEMA_connector. [Accessed 07 July 2019].

[47] J. Errington, "Linear DC Power Supply design," Skillbank, 2019. [Online]. Available:

http://www.skillbank.co.uk/psu/. [Accessed 07 July 2019].

[48] R. Bohn, "IP Ratings Explained - What Are IP Ratings? | NEMA Enclosures," NEMA, 2019.

[Online]. Available: https://www.nemaenclosures.com/blog/ingress-protection-ratings/.

[Accessed 07 July 2019].

[49] D. Marrakchi, "Top 5 PCB Design Guidelines Every PCB Designer Needs to Know," Altium,

2016 November 2016. [Online]. Available: https://resources.altium.com/pcb-design-

blog/top-pcb-design-guidelines-every-pcb-designer-needs-to-know. [Accessed 4 July 2019].

[50] Adafruit, "Adafruit STEMMA Soil Sensor - I2C Capacitive Moisture Sensor," Adafruit, 2019.

[Online]. Available: https://www.adafruit.com/product/4026. [Accessed 2 July 2019].

[51] B. Bergquist, "Standards defining Temp Sensor Notes," Burns Engineering, 2019. [Online].

Available:

http://www.burnsengineering.com/local/uploads/content/files/Standards%20Defining%20Te

mp%20Sensors%20Notes.pdf. [Accessed 6 July 2019].

[52] Adrianf. [Online].

